Abstract

The wireless technology is very popular now a days. There are various sensors are used in devices which are connected with the wireless network. Wireless network is used to reduce the cost and reduce the size and low cost consumption of the power. Such devices when organized into a network, present a powerful platform that can be used in many applications. Bluetooth is a low cost, short range, wireless technology with small footprint, low power consumption and reasonable throughput. Bluetooth wireless technology has become global not just as a point-to-point but was a network technology as well. The kernel of this paper, deals about implementation of Bluetooth based sensor networks.

Keywords

Bluetooth, Wireless Network, Sensors, Piconet

I. Introduction

The communications capability of devices and continuous transparent information routes are indispensable components of future oriented automation concepts. Communication is increasing rapidly in industrial environment even at field level. In any industry the process can be realized through sensors and can be controlled though actuators. The process is monitored on the central control room by getting signals through a pair of wires from each field device in Distributed Control System (DCS). With advent in networking concept, the cost of wiring is saved by networking the field devices. But the latest trend is elimination of wires i.e. wireless networks. Wireless sensor network is a network of small devices equipped with sensors, microprocessor and wireless communication interfaces. The goals of Bluetooth are unification and harmony as well, specifically enabling different devices to communicate through a commonly accepted standard for wire less connectivity.

II. Bluetooth

Bluetooth operates in the unlicensed ISM band at 2.4 GHZ frequency band and use frequency hopping spread spectrum technique. A typical Bluetooth device has a range of about 10 meters and can be extended to 100 meters. Communication channels support total bandwidth of 1MB/sec. a single connection support a maximum asymmetric data transfer rate of 721 KBPS maximum of three channels. In Bluetooth, a piconet is a collection of up to 8 devices that frequency hops together. Each piconet has one master usually a device that initiated establishment of the piconet, and up to 7 slave devices. Master’s bluetooth address is used for definition of the frequency hopping sequence. Slave devices use the master’s clock to synchronize their clocks to be able tyo hop simultaneously. When a device wants to establish a piconet it has to perform inquiry to discover other Bluetooth devices in the range. Inquiry procedure is defined in such a way to ensure that tow devices will after some time, visit the same frequency same time when that happens, required information is exchanged and devices can use paging procedure to establish connection.

Fig. 1: PICONET

Fig. 2: Scatteernet

The 7 devices need to communicate, there are two options. The first one is to put one or more devices into the park state. Bluetooth defines three low power modes sniff, hold and park. When a device is in the park mode then it disassociates from and piconet, but still maintains timing synchronization with it. The master of the piconet periodically broadcasts beacons (warning) to invite the slave to rejoin. The slave can rejoin the piconet only if there are less than seven slaves already in the piconet. If not so, the master has to ‘park’ one of the active slaves first. All these actions cause delay and for some applications it can be unacceptable for e.g.: process control applications that requires immediate response from the central control room.

Scatternet consists of several piconets connected by devices participation in multiple piconet. These devices can be slaves in all piconets or master in one piconet and slave in other piconets. Using scatternet higher throughput is available and multi-hop connections between devices in different piconets are possible, i.e. the unit can communicate in one piconet at time so they jump from pioneer to
another depending upon channel parameter. The main challenge in front of Bluetooth developers now is to prove interoperability between different manufactures devices and to provide numerous interesting applications. One of such applications is a wireless sensor network. Wireless sensor networks comprise number of small devices equipped with a sensing unit, microprocessors, and wireless communication interface and power source. An important feature of wireless sensor networks is collaboration of network nodes during the task execution. Another specific characteristic of wireless sensor network is data-centric nature. As deployment of smart sensor nodes is not planned in advance and positions of nodes in the field are not determined, it could happen that they either cannot perform required measurement or the error probability is high. For that a redundant number of smart nodes are deployed in this field. These nodes then communicate, collaborate and share data, thus ensuring better results. Smart sensor nodes scattered in the field, collect data and send it to users via "gateway" using multiple hope routes.

![Image](https://placehold.it/350x250)

Fig. 3: Wireless Sensor Network

B. Functions of Wireless Sensor Network Communication with users

Gateway communications with users or other sensor networks over the internet, WAN, Satellite or some shortage communication technology.

C. Communication with Sensor Networks

- Shortage wireless communication is used.
- It provides functions like discovery of smart sensor nodes, generic methods of sending receiving data to and sensors, routing.

D. Gateway Logic

- It controls gateway interfaces and data flow to and from sensor network.
- It provides an abstraction level that describes the existing sensors and their characteristics.
- It provides functions for uniform access to sensors regardless of their type, location or N/W topology, inject queries and tasks and collect replies.

From the user point of view, querying and tasking are two main services provided by wireless sensor networks. Queries are used when user requires only the current value of the observed phenomenon. Tasking is a more complex operation and is used when a phenomenon has to be observed over a large period of time. Both queries and tasks of time to the network by the gateway that also collects replies and forwards them to users.

III. Implementation

The main goal of our implementation was to build a hardware platform and generic software solutions that can serve as the basis and a test bed for the research of wireless sensor network protocols. Implemented sensor network consists of several sensors and is equipped with a microcontroller and a Bluetooth radio module. Gateway and smart nodes are members of the piconet and hence maximum seven smart nodes can exist simultaneously in the network. For example, a pressure sensor is implemented, as Bluetooth node in a following way. The sensor is connected to Bluetooth node and consists of the pressure sensing element, smart signal-conditioning circuitry including calibration and temperature compensation, and the transducer electronic data sheet. These features are built directly into the sensor microcontroller used for node communication control plus memory for TEDS configuration information.

IV. Architecture of Smart Sensor Node

This architecture shows in figure can easily be developed for specific sensor configurations such as thermocouples, strain gauges, and other sensor technologies and can include sensor signal conditioning as well as communications functions. Conditioned along sensor signal is digitized and digital data is then processed using stored TEDS data. The pressure sensor node collects data from multiple sensors and transmits the data via Bluetooth wireless communications in the 2.4 GHz base band to a network hub or other internet appliance such as a computer. The node can supply excitation to each sensor, or external sensor power can be supplied. Up to eight channels are available on each node for analog inputs as well as digital output. The sensor signal is digitized with 16-bit A/D resolution for transmission along with the TEDS for each sensor. This allows each channel to identify itself to the host system. The node can operate from either an external power supply or an attached battery. The maximum transmission distance is 10 meters with an optional capability to 100 meters.

![Image](https://placehold.it/350x250)

Fig. 4: Bluetooth Wireless Smart Pressure Sensor Node

The IEEE 1451 family of standards are used for definition of functional boundaries and interfaces that are necessary to enable smart transducer to be easily connected to a variety of networks. The standards define the protocol and functions that five the
transducer interchangeability in microcomputer recognized a pressure sensor, a temperature sensor, or another sensor type along with the measurement range and scaling information based on the information contained in the TEDS data. With Bluetooth technology, small transceiver modules can be built into a wide range of products including sensor systems, allowing fast and secure transmission of data within a given radius (usually up to 10m).

A Bluetooth module consists primarily of three functional blocks – an analog 2.4 GHz., Bluetooth RF transceiver unit, and a support unit for link management and host controller interface functions. The host controller has a hardware digital signal processing part-the Link Controller (LC), a CPU core, and it interfaces to the host environment. The link controller consists of hardware and software parts that perform Bluetooth based band processing, and physical layer protocols. The link controller performs low-level digital-signal processing to establish connections, assemble or disassemble, packets, control frequency hopping, correct errors and encrypt data.

The CPU core allows the Bluetooth module to handle inquiries and filter page request without involving the host device. The host controller can be programmed to answer certain page messages and authenticate remote links. The link manager(LM) software runs on the CPU core. The LM discovers other remote LMs and communicates with them via the protocol (LMP) to perform its service provider role using the services of the underlying LC. The link managers is a software function that uses the services of the link controller to perform link setup, authentication, link configuration, the link controller and link manger functions may not reside in the same processor. Another function component is of course, the antenna, which may be integrated on the PCB or come as a standalone item. A fully implemented Bluetooth module also incorporates higher-level software protocols, which govern the functionality and interoperability with other modules. Gateway plays the role of the piconet’s master in the sensor network. It controls establishments of the network, gathers information about the existing smart sensor nodes and sensor attached to them and provides access to them.

V. Invention of the Smart Sensor Nodes

Smart Sensor node Invention is the first procedure that is executed upon the gateway installation. It aims to discover all sensor nodes in the area and to build a list of sensor’s characteristics and network topology. Afterwards, it is executed periodically to facilitate addition of new or removal of the existing sensors. The following algorithm is proposed.

When the gateway is initialized, it performs Bluetooth inquiry procedure. When the Bluetooth device is discovered, the major and minor device classes are checked. These parameters are set by each smart node to define type of the device and type of the attached sensors. Service class field can be used to give some additional description of offered services. If discovered device is not smart node it is discarded. Otherwise service database of the discovered smart node is searched for sensor services. As currently there is no specific sensor profile, then database is searched for the serial port profile connection parameters. Once connection strings is obtained from the device. Bluetooth link is established and data exchange with smart mode can start.

VI. Conclusion

The wireless Bluetooth is produce a sensor network architecture. This architecture is used for the home and the other organizations. The user can used the devices with the range an devices will exchange the information with other devices. The wireless can reduce the cost of the network. It is also use for the boarder security force. Future work is to develop the new architecture which has low cost and high speed performance, and will get accurate result.

References

Mr. Gurpreet Singh received Maste Master of computer Applications Degree from Guru Nanak Dev University, Amritsar, Punjab. He is currently pursuing Ph.D in Computer Science. He contributed several research articles in International journals and National Conferences. He is currently working as an Assistant Professor in the Department of Computer Science at Khalsa College Chawinda Devi Amritsar, Punjab. His area of interest are Network Security, Programming and Data Structure.
Mr. Opinder Singh received Master of computer Applications Degree from Guru Nanak Dev University, Amritsar, Punjab. He is currently pursuing Ph.D in Computer Science. He contributed several research articles in International journals and National Conferences. He is currently working as an Assistant Professor in the Department of Computer Science at Khalsa College Chawinda Devi Amritsar, Punjab. His area of interest are Network Security, Programming and Data Structure.

Dr. Jatinder Singh is a dynamic researcher and prolific Master of c author in the field of Computer Applications Engineering. He obtained five master degrees in different fields. He did his M.Tech & Ph.D from Punjabi University patiala. He has also won the best Research paper award by UGC and Management Excellence award by MIDI. He published 65 National & International research papers in journals and conferences over the year and 35 highly acclaimed text and research books. He is a life member of CSI, ISTE, IETE and other professional scientific organizations. He is also Editorial Board member/Reviewer of many Journals. Currently he is Principal at Golden College, Gurdaspur.