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Abstract
To select the top rank Objects based on the quality of features 
in their spatial neighborhood. An attractive type of preference 
queries, which select the best spatial location with respect to the 
quality of facilities in its spatial area. Given a set D of interesting 
objects (e.g., candidate locations), a top-k spatial preference query 
retrieves the k objects in D with the highest scores. The featured 
score of a given object is derived from the quality of features 
(e.g., location and nearby features) in its spatial neighborhood. 
User preference queries are very important in spatial databases. 
With the help of these queries, one can found best location among 
points saved in database. In many situation users evaluate quality 
of a location with its distance from its nearest neighbor among a 
special set of points. In this paper R-trees can efficiently process 
main spatial query types, including spatial range queries, nearest 
neighbor queries, and spatial joins. It finds out the top most feature 
objects.
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I. Introduction
In many situations for decision making, users need select one or 
more data from database in accordance with their interest. The 
selected data must meet their desired constraints. For example 
suppose in a database about a shoreline city, information of its 
hotels such as cost and distance of each hotel from beach has been 
saved. A user wants to select a hotel with less cost and distance to 
beach. User hasn’t accurate asked (for example cost of hotel below 
100$ and distance to beach less than 1Km is accurate asked) but 
wants to find a set of data that are closer to their own interests. 
Such constraints called soft constraints and queries about these 
problems called user preference queries [1].
There are two basic queries for these problems. In the first type 
of queries that are known to top k, each of data attribute based 
on their importance to user gives a weight. The score of the data 
is computed by multiplying its values with the corresponding 
weights and aggregating them by a function. This query retrieves 
the k data with the highest scores [2]. In the second type of queries 
that are known to skyline, the set of all data that no other data 
dominate them are retrieved. A data dominate another if and only 
if for all attributes is better than or equals and for at least one 
attribute is better than the other. Indeed, in this way all data that 
aren’t worse than any other data in database are retrieved [3].
User preference queries are very important in spatial databases. 
Spatial data in addition to non spatial data can be stored in these 
databases. With the help of these queries, user can find best places 
in database according to their interest
For many application users evaluate quality of a location with its 
distance from its nearest neighbor among special set of points. For 
example suppose a user wants to find a hotel for rest that is near 
to a restaurant and a coffee shop. So he considers coffee shops 
and restaurants as two query point sets and evaluates hotels with 
their distances to nearest coffee shop and restaurant. Less attention 
has been about subject distance of a point to its nearest neighbors 

as preference of the user.
Related works in this field are in based on top-k queries. In top-k 
queries setting a weight for each attribute and a scoring function 
for aggregating attribute.

II. Related Works
Object ranking is a popular retrieval task in various applications. 
In relational databases, we rank tuples using an aggregate score 
function on their attribute values [2]. For example, a real estate 
agency maintains a database that contains information of flats 
available for rent. A potential customer wishes to view the top-
10 flats with the largest sizes and lowest prices. In this case, the 
score of each flat is expressed by the sum of two qualities: size 
and price, after normalization to the domain [0,1] (e.g., 1 means 
the largest size and the lowest price). In spatial databases, ranking 
is often associated to Nearest Neighbor (NN) retrieval. Given a 
query location, we are interested in retrieving the set of nearest 
objects to it that qualify a condition (e.g., restaurants). Assuming 
that the set of interesting objects is indexed by an R-tree [3], we 
can apply distance bounds and traverse the index in a branch-
and-bound fashion to obtain the answer [4]. Nevertheless, it is 
not always possible to use multidimensional indexes for top-k 
retrieval. First, such indexes break-down in high dimensional 
spaces [5-6]. Second, top-k queries may involve an arbitrary set 
of user-specified attributes (e.g., size and price) from possible ones 
(e.g., size, price, distance to the beach, number of bedrooms, floor, 
etc.) and indexes may not be available for all possible attribute 
combinations (i.e., they are too expensive to create and maintain). 
Third, information for different rankings to be combined (i.e., 
for different attributes) could appear in different databases (in a 
distributed database scenario) and unified indexes may not exist 
for them. may arrive from different (distributed)  sources. 

Fig. 1: Examples of Top-k Spatial Preference Queries. (a) Range 
Score 0:2 km. (b) Influence Score  0:2 km

Their motivation is to minimize the number of accesses to the 
input rankings until the objects with the top-k aggregate scores 
have been identified. To achieve this, upper and lower bounds 
for the objects seen so far are maintained while scanning the 
sorted lists. In the following subsections, we first review the R 
tree, which is the most popular spatial access method and the NN 
search algorithm of [4].  The most popular spatial access method 
is the R-tree [3], which indexes minimum bounding rectangles 
(MBRs) of objects. Fig. 2 shows a set D = {p1,…….., p8} of spatial 
objects (e.g., points) and an R-tree that indexes them. R-trees can 
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efficiently process main spatial query types, including spatial range 
queries, nearest neighbor queries, and spatial joins. Given a spatial 
region W, a spatial range query retrieves from D the objects that 
intersect W. For instance, consider a range query that asks for all 
objects within the shaded area in fig. 2. Starting from the root of 
the tree, the query is processed by recursively following entries, 
having MBRs that intersect the query region. For instance, e1 
does not intersect the query region, thus the sub tree pointed by e1 
cannot contain any query result. In contrast, e2 is followed by the 
algorithm and the points in the corresponding node are examined 
recursively to find the query result p7. A nearest neighbor (NN) 
query takes as input a query object q and returns the closest object 
in D to q. For instance, the nearest neighbor of q in Figure 2 is p7. 
Its generalization is the k-NN query, which returns the k closest 
objects to q, given a positive integer k. NN (and k-NN) queries 
can be efficiently processed using the best first (BF) algorithm of 
[4], provided that D is indexed by an R-tree. A min-heap H which 
organizes R-tree entries based on the (minimum) distance of their 
MBRs to q is initialized with the root entries. In order to find the 
NN of q in Figure 2, BF first inserts to H entries e1, e2, e3, and 
their distances to q. Then the nearest entry e2 is retrieved from H 
and objects p1, p7,p8 are inserted to H. The next nearest entry in 
H is p7, which is the nearest neighbor of q. In terms of I/O, the BF 
algorithm is shown to be no worse than any NN algorithm on the 
same R-tree [4]. The aggregate R-tree (a R-tree) [10] is a variant 
of the R tree where each non-leaf entry augments an aggregate 
measure for some attribute value (measure e) of all points in 
its sub tree. As an example, the tree shown in Figure 2 can be 
upgraded to a MAX a R-tree over the point set, if entries e1, e2, e3 
contain the maximum measure values of sets {p2, p3} {p1, p8,p7} 
(p4, p5, p6}, respectively. Assume that the measure values of p4, 
p5, p6 are 0.2, 0.1, 0.4, respectively. In this case, the aggregate 
measure augmented in e3 would be max{0.2, 0.1, 0.4} = 0.4. In 
this paper, we employ MAX a R-trees for indexing the feature 
datasets (e.g., restaurants), in order to accelerate the processing 
of top-k spatial preference queries. Given a feature dataset F and 
a multi-dimensional region R, the range top-k query selects the 
tuples (from F) within the region R and returns only those with 
the k highest qualities. Hong et al. [7] indexed the dataset by a 
MAX a R-tree and developed an efficient tree traversal algorithm 
to answer the query. Instead of finding the best k qualities from F 
in a specified region, our (range score) query considers multiple 
spatial regions based on the points from the object dataset D, and 
attempts to find out the best k regions (based on scores derived 
from multiple feature datasets Fc).

III. Proposed System

A. Simple Probing Algorithm
We propose a group evaluation technique that computes the scores 
of multiple points concurrently.

It retrieves the query results by computing the score of every •	
object point.
This algorithm uses two global variables. WkIt is a min-•	
heap for managing the top-k results and represents the top-k 
scores.
Initially, the algorithm is invoked at the root node of the •	
object tree.
The procedure is recursively applied (at Line 4) on tree nodes •	
until a leaf node is accessed.
When a leaf node is reached, the component score Fc(e) (at •	
Line 8) is computed by executing a range search on the feature 

tree Fc for range score queries.
Lines 6-8 describe an incremental computation technique, for •	
reducing unnecessary component score computations.

B. Group Probing Algorithm
Due to separate score computations for different objects, SP •	
is inefficient for large object datasets.
We propose the Group Probing algorithm (GP), a variant of •	
SP that reduces I/O cost by computing scores of objects in 
the same leaf node of the R-tree concurrently.
In GP, when a leaf node is visited, its points are first stored •	
in a set V and then their component scores are computed 
concurrently at a single traversal of the Fc tree.
Here MBR •	 → for distance notation.
Given a point p and an MBR e, the value mindist(p, e) •	
(maxdist(p, e)) denotes the minimum(maximum) possible 
distance between p and any point in e.
Similarly, given two MBRs ea and eb, the value mindist(ea; eb) •	
(maxdist(ea; eb)) denotes the minimum (maximum) possible 
distance between any point in ea and any point in eb.

Group Range Algorithm
Initially, the procedure is called with N being the root node •	
of Fc.
If e is a non-leaf entry and its mindist from some point p 2 V •	
is within the range, then the procedure is applied recursively 
on the child node of e, since the sub-tree of Fc rooted at e 
may contribute to the component score of p.
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C. Branch-and-Bound Algorithm
GP is still expensive as it examines all objects in D and computes 
their component scores. We now propose an algorithm that can 
significantly reduce the number of objects to be examined. The 
key idea is to compute, for non leaf entries e in the object tree D, 
an upper bound T of the score for any point p in the sub tree of 
e. If  then we need not access the sub tree of e, thus we can save 
numerous score computations.
Algorithm 3 is a pseudo code of our BB algorithm, based on this 
idea. BB is called with N being the root node of D. If N is a non 
leaf node, Lines 3-5 compute the scores Top for non leaf entries 
e concurrently. Recall that Top is an upper bound score for any 
point in the sub tree of e. The techniques for computing Top will 
be discussed shortly. Like (3), with the component scores Top 
known so far, we can derive Top an upper bound of Top then the 
sub tree of e cannot contain better results than those in Wk and 
it is removed from V. In order to obtain points with high scores 
early, we sort the entries in descending order of invoking the 
above procedure recursively on the child nodes pointed by the 
entries in V .
If N is a leaf node, we compute the scores for all points of N 
concurrently and then update the set Wk of the top-k results. 
Since both Wk and _ are global variables, their values are updated 
during recursive call of BB.

D. Spatial Query Evaluation on R-Trees
The most popular spatial access method is the R-tree [3], which 
indexes minimum bounding rectangles (MBRs) of objects. Fig. 
2 shows a set D {p1, . . . , p8} of spatial objects (e.g., points) 
and an R-tree that indexes them. R-trees can efficiently process 
main spatial query types, including spatial range queries, nearest 
neighbor queries, and spatial joins. Given a spatial region W, a 
spatial range query retrieves from D the objects that intersect W. 
For instance, consider a range query that asks for all objects within 
the shaded area in Fig. 2. Starting from the root of the tree, the 
query is processed by recursively following entries, having MBRs 
that intersect the query region. For instance, e1 does not intersect 
the query region, thus the sub tree pointed by e1

Fig. 2:

Given a feature data set F and a multidimensional region R, the 
range top-k query selects the tuples (from F) within the region R 
and returns only those with the k highest qualities. Hong et al. [11] 
indexed the data set by a MAX a R-tree and developed an efficient 
tree traversal algorithm to answer the query. Instead of finding 
the best k qualities from F in a specified region, our (range score) 
query considers multiple spatial regions based on the points from 
the object data set D, and attempts to find out the best k regions 
(based on scores derived from multiple feature data sets Fc).

IV. Results

Fig. 3: Bar Chart on basis on Time Complexity

Fig. 4: Line Chart on Basis on Time Complexity
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Fig. 5: Line Chart on basis on Space Complexity

Fig. 6: Bar Chart on basis on Space Complexity

V. Conclusion 
We studied top-k spatial preference queries, which provide a novel 
type of ranking for spatial objects based on qualities of features in 
their neighborhood. In this paper R-trees can efficiently process 
main spatial query types, including spatial range queries, nearest 
neighbor queries, and spatial joins. Experimental results shows 
that R-tree is best compared to branch and bound algorithm.
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