
IJCST  Vol. 7, ISSue 2, AprIl - June 2016

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology   171

 ISSn : 0976-8491 (online)  |  ISSn : 2229-4333 (print)

Efficient Study of Domain-Based Transactions 
Ranges Program Mechanisam

Dr. V.Anandam
Dept. of CSE, Vardhaman College of Engg., Kacharam, Shamshabad, Hyderabad, Telangana, India

Abstract
The scope of this Transactions ranges from the mechanisms 
through the development of principles to the application of those 
principles to specific environments. Specific topic areas include: (a) 
development and maintenance methods and models, e.g., techniques 
and principles for the specification, design, and implementation 
of software systems, including notations and process models; (b) 
assessment methods, e.g., software tests and validation, reliability 
models, test and diagnosis procedures, software redundancy and 
design for error control, and the measurements and evaluation of 
various aspects of the process and product; (c) software project 
management, e.g., productivity factors, cost models, schedule 
and organizational issues, standards; (d) tools and environments, 
e.g., specific tools, integrated tool environments including the 
associated architectures, databases, and parallel and distributed 
processing issues; (e) system issues, e.g., hardware-software 
trade-off; and (f) state-of-the-art surveys that provide a synthesis 
and comprehensive review of the historical development of one 
particular area of interest.

Keywords
MODIS, IR, CP, CN, FP, FN, GHSOM, Semantic Retrieval 
Algorithm, Conceptual Graph

I. Introduction
From its beginning in the compiler community, source code analysis 
has spread into a variety of software engineering (SE) tasks. 
However, these roots have left a bias toward the kinds of analyses 
useful to a compiler. Recently, a growing number of researchers 
have extracted information of no interest to a compiler. A common 
example is the semantic information found in the natural language 
of a program’s source code (e.g., within the program’s identifiers). 
Information retrieval (IR) focuses on the analysis of natural language 
in an effort to classify text documents as relevant or irrelevant to 
a specific query. Recently, IR has expanded to include techniques 
for determining answers to questions and for organizing text based 
on topics. The goal of this entry is to survey the application of 
IR to the challenges encountered during the first “half” of the SE 
development process—that is, problems encountered up through a 
product’s initial release. Examples include requirements formation 
and the need for software repositories. To limit the scope, the survey 
favors techniques presented with sufficient technical detail to allow 
reproduction. Furthermore, the entry is biased toward techniques 
that report results from empirical study. The remainder of this 
entry first introduces necessary IR terminology and then describes 
common IR techniques applied to multiple SE problems. These 
two sections are included for completeness and may be skipped 
by readers familiar with IR. The bulk of the entry considers the 
application of IR to the SE activities encountered during initial 
software development. This is presented roughly in the order that 
these activities are found in the software development life cycle. 
Finally, the entry considers some forward-looking thoughts on the 
future of IR in SE. A companion entry considers the application of IR 
techniques to problems encountered during software maintenance 

and evolution (see “Information Retrieval Applications Software 
Maintenance and Evolution” entry).

II. Terminology
This section introduces the key terminology used in IR techniques 
and two key metrics used to evaluate them. For consistency, 
terminology has been normalized across the techniques considered. 
Common terminology is introduced here; terminology specific to 
a single technique is defined when used. The section ends with a 
glossary of the major terms used. To begin with, the term artifact 
denotes the atomic “entity” traditionally returned in response to 
a query. In SE, artifacts include requirements documents, design 
documents, source code, test cases. When only source code artifacts 
are considered, the term module is used to refer to the basic unit 
of source code to which a technique is applied. This may, for 
example, be a method, a class, a function, or a file. There are 
occasional exceptions when a technique specifically applies to a 
particular syntactic entity. There is a need to differentiate two kinds 
of semantics used by many of the techniques. First, programming 
language semantics refers to the meaning of a program as a state 
transformer from inputs to outputs. Second, natural language 
semantics refers to the meaning inherent in the natural language 
appearing in a program (most often in its identifiers and internal 
comments). The remaining discussion defines two key metrics used 
to evaluate IR techniques: precision and recall (informally “the 
whole truth and nothing but the truth”). Precision measures the 
proportion of retrieved artifacts that are relevant, which indicates 
how well a tool distinguishes between relevant and non-relevant 
artifacts. It can also be interpreted as the probability that a retrieved 
artifact is relevant. Recall is the proportion of relevant artifacts that 
are retrieved, which indicates how well a tool retrieves relevant 
artifacts. Recall can also be interpreted as the probability that 
a relevant artifact is retrieved. To illustrate these two metrics, 
consider fault prediction where a module can be either faulty (F) 
or not faulty (NF). For each possibility, a fault prediction technique 
may correctly or incorrectly label the module. This gives rise to four 
partitions. The definitions of precision and recall are based on the 
number of modules in each partition. In the following, the variables 
CP, CN, FP, and FN are used to represent these four counts:

CP ¼ count of correct positives (predicted as F and actually • 
in F)
CN ¼ count of correct negatives (predicted as NF and actually • 
in NF)
FP ¼ count of false positives (predicted as F but actually in • 
NF)
FN ¼ count of false negatives (predicted as NF but actually • 
in F)

Based on these four counts, precision is CP/(CP þ FP) (i.e., the 
ratio of correctly predicted as faulty to all predicted as faulty) 
and recall is CP/(CP þ FN) (i.e., the ratio of correctly predicted 
as faulty to number of faulty modules). For example, consider a 
program with ten modules M1 ... M10 where M1 ... M3 are faulty 
but M2 ... M6 are predicated as faulty. The values of CP, CN, FP, 
and FN are as follows:



IJCST  Vol. 7, ISSue 2, AprIl - June 2016  ISSn : 0976-8491 (online)  |  ISSn : 2229-4333 (print)

w w w . i j c s t . c o m 172   InternatIonal Journal of Computer SCIenCe and teChnology

Here the precision is CP/(CP þ FP) ¼ 2/5 and recall is CP/ (CP þ FN) 
¼ 2/3. As precision and recall form the most important measures 
of an IR technique’s performance, a better understanding of the 
trade-offs between the two is helpful. Antoniol, Gue´he`neuc, 
and Tonella consider three example SE applications that illustrate 
these trade-offs.[1] The first example, aspect mining, employs IR 
to identify potential modules from which to “grow” aspects. The 
second example, feature location, aims at identifying the parts of a 
program activated when exercising a given functionality (e.g., the 
methods to be modified to fix a bug). The final example, design 
pattern identification, seeks to identify groups of classes whose 
structure and organization match the structure and organization 
advocated by a given design pattern. These three tasks illustrate 
elements of a continuum in which the balance between precision 
and recall is highly dependent on the task at hand. In migration-
oriented tasks, such as aspect mining, IR is used to provide a 
starting point for developers. Thus, precision of the candidate 
modules is of high importance; however, recall (completeness) is 
less important since only a developer can completely identify the 
modules that belong to an aspect. Impact analysis tasks, such as 
feature location, require a balance between precision and recall to 
provide engineers with as few methods as possible while ensuring 
that important methods are not overlooked. Finally, comprehension-
oriented tasks such as design pattern identification, which begins 
by identifying candidate micro architectures, favor high recall at 
the cost of precision. This is because identifying candidate micro 
architectures is time-consuming and error prone for developers 
while discriminating among identified micro architectures is quite 
quick and easy 

III. Software Repositories
For years, libraries have allowed programmers to reuse common 
functions (e.g., qsort). Scaling this up, a software repository is 
a collection of reusable modules. Access to such a repository 
makes an engineer more efficient and increases software quality 
when previously “burned-in” modules are reused. However, to be 
useful, a repository must provide a sufficient number of modules 
covering a sufficiently wide spectrum of domains, and it must 
provide a satisfactory retrieval system by which an engineer 
can locate an appropriate module.[8] Techniques for building 
module repositories are divided roughly into two groups: IR-based 
approaches that use natural language and AI-based approaches that 
use extracted knowledge. In the former, no semantic knowledge 
is used and no interpretation of the modules is given; thus, a tool 
attempts to characterize the modules rather than understand them. 
For IR, the natural-language documentation (e.g., manual pages 
and comments) forms a rich source of information from which to 
organize repositories. Once a repository of reusable modules is 
assembled, effective search capability is essential. In the ideal case, 

a search provides an exact match for an engineer’s needs. However, 
it is more common for no such match to exist. In this case, the 
engineer needs to be able to browse the repository to find the 
module that best matches the desired functionality. A wide range 
of component categorization and searching methods has been 
proposed, from the simple string search to faceted classification 
and behavioral matching [9]. These different methods involve 
different trade-offs between performance and implementation 
cost. This section considers two techniques that automatically 
cluster modules for placement into a repository. While cluster 
has no commonly agreed-upon definition, herein it is considered 
to be a group of objects whose members are more similar to each 
other than to the members of any other group. The first approach 
to automatically building a repository uses a growing hierarchical 
self-organizing map (GHSOM) [8]. Such maps are based on an 
artificial neural network referred to as a Self-Organizing Map 
(SOM). In essence, a SOM determines a winning neuron for 
each input vector using a similarity measure (e.g., Euclidean 
distance) to compare the weights of the input vector to those 
of each neuron. This process continues until learning converges 
to a stable set of weight vectors for each neuron. After training, 
the topology of the data becomes geographically explicit in that 
similar input data are mapped onto nearby regions of the map. 
Traditional SOMs are not practical when the number of software 
modules is large, as intensive iterative training is required. A recent 
improvement, the GHSOM, is built from a hierarchy of multiple 
layers of SOMs. A GHSOM grows from a single neuron in two 
dimensions: horizontally (by increasing the size of a SOM) and 
hierarchically (by increasing the number of layers). The upper 
layers of a GHSOM provide a coarse organization of the major 
clusters in the data, whereas the lower layers offer a more detailed 
view. In more detail, horizontal growth starts by initializing the 
weight vector of each neuron with random values. It then performs 
traditional SOM learning for a fixed number of iterations. Finally, 
two neurons are identified: 1) the neuron with the largest deviation 
between its weight vector and the input vectors it represents and 
2) its most dissimilar neighbor. The approach then inserts a new 
row or a new column between these two neurons (with weight 
vectors initialized as the average of their neighbors), and the 
traditional SOM learning is repeated. This process continues until 
the mean quantization error of the map drops below a user-defined 
threshold. Hierarchical growth checks each neuron to find out if 
its quantization error is above a userspecified threshold. If so, 
a new SOM is assigned at a subsequent layer of the hierarchy. 
This SOM is trained with the input vectors mapped to the high-
quantization neuron. When building software repositories, the 
weight vectors are initially composed of tf-idf values for the key 
concepts (non-stop words) extracted from the source code and 
the documentation using a single-term free-text indexing scheme. 
During an empirical study of 273 samples from three different 
domains, it was determined that key concepts occurring in fewer 
than five modules or in more than 218 modules should be omitted. 
After removal, both techniques successfully created a topology-
preserving representation of the three domains. However, when 
dealing with a large number of software modules, GHSOM 
behaved better than SOM in the sense that architecture was 
determined automatically during its learning process. Moreover, 
GHSOM was able to reveal the inherent hierarchical structure 
of the data in its layers and provided the ability to select the 
granularity of the representation at different levels of the GHSOM. 
The second repository construction approach is unusual. Most IR 
techniques ignore the location of terms within an artifact. This 



IJCST  Vol. 7, ISSue 2, AprIl - June 2016

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology   173

 ISSn : 0976-8491 (online)  |  ISSn : 2229-4333 (print)

second approach incorporates term proximity into the GURU tool 
for automatically building software repositories [8]. It assembles 
a conceptually structured software repository based on natural-
language documentation (e.g., manual pages and comments). 
Repository construction is done in two steps: first, attributes 
are extracted from the documentation by identifying lexical 
affinities (LAs); second, a hierarchy for browsing is generated. 
In general, an LA is the correlation between two units of language. 
For repository building, these units are words and are restricted 
to those separated by, at most, five intervening words within a 
single sentence. The LAs are further filtered based on resolving 
power: a combination of the quantity of information associated 
with each word and the frequency of occurrence of the LA within 
the considered artifact. The quality of information from the LA 
< w1, w2 > is defined as -log(P(w1) * P(w2)), where P(w) is the 
observed probability of an occurrence of w in the corpus (therefore 
more frequent words carry less information). The power of the 
LA < w1, w2 > occurring f times is then f -log(P(w1) * P(w2)). 
For example, the LA appears as often as in the mv manual page; 
however, it has a lower resolving power because the word system 
has a lower quantity of information (appears more often) than 
overwrite in the documentation. Finally, to compare different 
artifacts, resolving power is normalized to a standard z score, 
denoted hereafter using r. Based on the normalized power of each 
artifact’s LAs, artifact clusters are constructed. In doing so, only 
the LAs whose value is at least one standard deviation above the 
mean are retained. The process starts with each artifact as its own 
cluster and repeatedly merges the two most-similar clusters, until 
a single cluster remains. Here similarity is defined so that it takes 
resolving power into account: similarity(x, y) ¼ i rx(i) ry(i) where 
rx(i) is the standardized value of LA having index i in artifact x. 
Post construction, the repository can be queried using natural 
language. The result is a ranked list of modules; however, using 
the structure obtained during clustering makes it possible for a 
user to interactively inspect nearby modules. For example, this 
allows a user trying to “identify a process” to quickly go from 
the top-ranked kill man page to the ps man page that is clustered 
with it. In an empirical study using the AIX man pages, GURU 
performed better (higher precision and comparable recall) than 
the IBM-supplied Info Explorer on a collection of representative 
search tasks. 

IV. Traceability Links Between Software Artifacts
Traceability links tie together software artifacts from stakeholders’ 
initial requests to requirements specifications, design artifacts, 
models, reports, source code, and test cases [10-11] Maintaining 
these links is an arduous task. Information Retrieval Applications 
in Software However, inadequate links is one of the main factors 
contributing to project cost overruns and failures; thus, there is 
a need for tool support to (re)establish traceability links. Given 
that link maintenance is a costly manual process, several IR-based 
automatic and semiautomatic techniques have been proposed. This 
section outlines three such techniques. The main focus of the work 
to date has been on how to report candidate links to a user with 
maximum recall without sacrificing precision. LSI is the most 
popular retrieval technique used, although several other methods 
including VSM and probabilistic IR have been experimented with. 
No method has yet emerged as a clear favorite. The first technique 
focuses on discovering links between high-level requirements and 
low-level requirements [12]. Three different IR approaches are 
compared: VSM, VSM with manual identification of key phrases, 
and thesaurus retrieval. In the second approach, key phrases are 

sequences of k technical terms extracted from the definitions or 
acronyms sections of the requirements specification and manually 
added to each requirement. They increase the relevance of matches 
related to technical terminology. For the third approach, each 
thesaurus entry is formally a tuple (ti, tj, aij) where ti and tj are 
terms (either words or key-phrases) and aij 2 [0,1] is an expert-
assigned similarity coefficient. The thesaurus’s coefficients are 
created for the set of words present in the data dictionary and the 
acronym lists found in appendices of requirements documents. In 
the thesaurus approach, the cosine similarity equation is augmented 
by adding d(ti) q(tj) þ d(tj) q(ti) to the numerator for terms ti and 
tj, when terms ti and tj are related according to the hand-built 
thesaurus. Here, d(t) is the weight of term t in the design and q(t) 
is the weight of term t in the query. This gives added “credit” to 
artifacts that include words related to query words, but not actually 
found in the query. The results were compared with the commercial 
tool Super Trace Place and an analyst’s judgments using two 
different data sets from NASA’s publicly available Moderate 
Resolution Imaging Spectroradiometer (MODIS) project. The 
first set contained 10 high-level requirements and 10 lower-level 
requirements. The second contained 19 high-level requirements 
and 10 lower-level requirements. Comparing the three approaches, 
the VSM approach achieved a recall of 23% and precision of 18%. 
The VSM with key phrases approach achieved a recall of 27% and 
precision of 5%, and the thesaurus version achieved a recall of 
85% and precision of 40%; thus, of the three, thesaurus retrieval 
performed the best. when compared to Super Trace Plus and the 
human analysts, it achieved higher recall but lower precision. 
The lower precision can be counted against the considerable 
human time differential. Constructing the thesaurus required 
only half an hour, while applying Super Trace Plus took four 
hours and the analyst took nine hours. The second link traceability 
technique extends the ADAMS tool to establish traceability 
links using an LSI based technique.[10] The extension requires 
three enhancements: an indexer, an SVD generator, and a query 
executor. The indexer updates the term artifact matrix, while the 
SVD generator recomputed the LSI’s single-value decomposition. 
The third enhancement identifies traceability links. The tool is 
designed to be used iteratively beginning with the user identifying 
an initial set of links for each artifact a, links(a). The system then 
retrieves the set of links whose similarity to a is greater than or 
equal to a user-determined similarity threshold e, retrieved(a,e). 
Comparing these two sets yields four possibilities:

Inclusion Match(a, €)= links(a)∩ retrieved(a, €)
Exclusion Match(a, €)= links(a) ∩ retrieved(a,€)
Missing Links(a, €) =links(a) ∩ retrieved(a, €)
Warning Links(a, €)=links(a) ∩ retrieved(a, €)

Here the latter two sets contain links in need of attention. For 
example, Warning Links includes those links that the user may 
want to remove from links(a). The generation of these four sets is 
iterative with the engineer first updating links(a) and potentially 
lowering the threshold. The user stops iterating when links(a) 
and retrieved(a,e) come into agreement. Given the importance of 
maximizing recall while not sacrificing precision, the following 
methods of limiting the retrieved artifacts were experimented 
with:

1. Constant Threshold
All artifacts that have a cosine similarity score greater than a 
constant threshold are retrieved. A widely used threshold is e ¼ 



IJCST  Vol. 7, ISSue 2, AprIl - June 2016  ISSn : 0976-8491 (online)  |  ISSn : 2229-4333 (print)

w w w . i j c s t . c o m 174   InternatIonal Journal of Computer SCIenCe and teChnology

0.707, which corresponds to a 45angle between the corresponding 
vectors.

2. Variable Threshold
The top k percent of the returned artifacts are reported.

3. Cut Point
This is a traditional limit where n artifacts are selected.

In a case study, 150 artifacts were gathered from EasyClinic (a 
product developed by final year students at the University of 
Salerno, Italy). The program manages the operations required by a 
medical ambulatory. Artifacts include 30 use cases, 20 interaction 
diagrams, 63 test cases, and 37 code classes. To achieve 100% 
recall, a constant threshold of e ¼ 0.11, a variable threshold of k 
¼ 10%, or a cut point of n ¼ 132 artifacts were required. Each 
method resulted in about 12% precision. The best results (recall 
¼ 80% and precision ¼ 24%) were achieved by a e ¼ 0.28, k ¼ 
31%, or n ¼ 46 artifacts. The final technique extends the above 
by modifying the threshold strategy and applying filtering to both 
dimensions of the similarity matrix [13].

V. Software Reuse
Software reuse is the use of existing software knowledge or 
artifacts to build new software. It has the potential to improve 
software quality, productivity, reliability, and maintainability [14]. 
Existing reuse algorithms can be classified as free text, faceted 
index, or semantic net based [15]. The free-text approach, to which 
IR’s indexing technology is most applicable, extracts key concepts 
from each module to be used as search keys by engineers. In 
faceted index approaches, experts extract keywords from program 
descriptions and documentation; they then arrange the keywords 
by characteristics. Finally, the semantic-net approach uses a large 
knowledge base, a natural-language processor, and a semantic 
retrieval algorithm to retrieve software components. An age-old 
debate, first in the IR literature and later in the context of software 
reuse, considers the pros and cons of free-text retrieval versus 
controlled vocabulary, multifaceted retrieval. In short, some 
claim that free-text retrieval produces too many false positives 
and false negatives. However, controlled vocabulary involves 
the (significant) cost of building and maintaining vocabularies 
and of classifying/indexing components [9]. The four techniques 
considered in this section are considered in roughly chronological 
order. They all use the “building block” approach to reuse, where 
developers must find reusable components, assess their worth, 
and then potentially tailor them to the problem at hand. The first 
technique includes some history and perspective by considering an 
older faceted approach. The remaining three techniques are free-
text techniques reflecting more recent trends. The final approach 
further exploits the fact that free text does not need structure 
by applying IR to the requirements phase (where typically only 
natural-language descriptions exist). Early work on reuse, done 
when faceted approaches were popular, includes that of Wood and 
Summerville who observe that a balance must be struck between 
the need for meaningful representation and ease of use [16]. For 
example, keywords provide ease of use and general applicability 
while lacking meaningful representation. On the other hand, with 
a faceted approach, significant time is required to construct the 
conceptual classification. Wood and Summerville describe an 
IR-based reuse system designed to store and retrieve software 
components based on frames (expert designed component 
descriptors). The approach uses a hierarchic (enumerative) 

classification scheme that demonstrates how individual keywords 
fail to provide an accurate description of software component 
purpose. The frames approach originated with the conceptual 
dependency technique used in natural language understanding 
to represent the semantics of an “understood” text [16]. Atomic 
frames capture one of three types of concepts: actions, nominal’s, or 
modifiers. Actions correspond to the basic functions that software 
components perform; nominal’s correspond to the objects that 
perform the functions; and modifiers refine actions and nominals. 
Each frame has a variable number of slots (which can be left 
unfilled). For example, the print frame has three slots:

Frame: print < Actor, Printee, Destination >
Example: print < more, t.c, terminal >
Example: print < lpr, t.ps, lj4 >

Atomic frames are designed to apply at the function level. For larger 
syntactic entities, aggregate frames are used. Each primitive in an 
aggregate includes a slot that refers to the aggregate; thus, a search 
that uncovers a part can lead to the whole. To perform a search, a 
user (partially) fills in a frame for the component to search for. In 
addition, more precise descriptions than afforded by keywords are 
supported by the meaningful relationships between concepts using 
descriptors. Recent trends favor free-text techniques. Example 
evidence of the turning point can be found in the work of Mili 
et al.[9] who note “this result [the superiority of free-text reuse] 
was surprising as earlier work had often shown that controlled 
vocabulary performed better than free text.” Their experiment 
compared all-manual controlled-vocabulary retrieval with free-
text retrieval. Instead of the typical IR based computation of recall 
and precision based on some abstract measure of “relevance,” 
they used a measure that took into account “the true utility of 
the retrieved components.” Further, they used a more realistic 
experimental protocol (closer to the way that such tools are used in 
practice), where a developer’s decision to use a tool or not includes 
the estimated effort to build a component from scratch, the cost of 
using a tool, and the perceived track record of the tool. In contrast 
to past experiments, the study controlled only the search method 
used. Subjects could perform an unlimited number of searches 
and had no time limitation. For precision, Mile et al. used the ratio 
of the retrieved components that had non-zero pertinence to the 
total number of retrieved components. Pertinence is used because 
it relates to a developer’s ability to solve the problem at hand. 
The pertinence of artifact A is taken in the context of a solution 
set S (i.e., A is useful “only if” the other components required to 
build a solution are retrieved with it). The pertinence of a set of 
artifacts is the sum of their individual pertinence. One implication 
of this definition is that total user satisfaction can be achieved with 
a subset of the relevant components, which is not the case for 
recall. Data from five subjects (all experienced Cþþ programmers) 
performing 11 queries were collected using a data set of about 200 
classes and 2000 methods taken from the OSE (OTC (Overseas 
Telecommunications corporation) Software Environment) library. 
For each subject, each query was randomly assigned either the 
keyword-based or plain-text search method. Informally, plain-
text retrieval yields better recall and somewhat better precision. 
Statistically, plain-text retrieval yields significantly better recall 
than controlled vocabulary-based retrieval (p ¼ 0.0500), while 
there is no statistical difference in their precision (p ¼ 0.3404). As 
stated earlier, these results run counter to previous experimental 
evidence where artifact retrieval experiments have consistently 
shown that controlled vocabulary-based retrieval yielded better 



IJCST  Vol. 7, ISSue 2, AprIl - June 2016

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology   175

 ISSn : 0976-8491 (online)  |  ISSn : 2229-4333 (print)

recall and precision than plain-text (although the difference was 
judged by many as being too small to justify the extra costs involved 
in controlled vocabulary-based retrieval). To explain these results, 
several hypotheses were investigated, but none were validated 
by the data. For example, controlled vocabulary might make the 
search more tedious, causing users to give up too easily, yielding 
lower recall. Plain-text retrieval might favor queries whose answers 
involved a mix of methods and classes. Multifaceted retrieval (e.g., 
based on content and time) might require more information than 
the user is able to provide in the early stages of problem solving 
(and then fails to capture a faithful expression of users’ needs at 
later stages). Finally, the quality of indexing might be to blame. 
There are two potential weaknesses, but neither accounts for the 
observed difference in performance. These results complement 
an emerging consensus that while measured performance may 
favor controlled vocabulary retrieval it hardly justifies the cost. 
Perhaps more importantly, four subjects out of five preferred plain-
text search. This preference is likely to persist with the increased 
exposure to plain-text search available from web search engines. 
Finally, Mili et al. suggest that multifaceted classification and 
retrieval are the wrong level of formality in two ways. First, when 
used in the early stages of a project, they coincide with analysis, 
which is fairly exploratory. A multifaceted search is too rigid and 
constraining because the solution is unformed, so a plain-text 
search is more appropriate. Second, after contemplating several 
designs, a developer may then start searching for components 
that would play a given role within a design, and multifaceted 
classification may not be expressive enough. The second free-
text approach shows how the Patricia (Program Analysis Tool 
for Reuse) system can be used to search for components using 
semantic matching [15]. Patricia uses a knowledge base built 
from an ontology of interrelated domain terms and definitions to 
describe software components. This information is stored using 
a conceptual graph (CG): A system of logic-based semantic 
networks, an AI technique that expresses meaning in a form 
that is logically precise, humanly readable, and computationally 
tractable. Although the knowledge base adds information that is 
generally not available to a retrieval engine, this is considered 
free-text retrieval because the user inputs a free-text query and 
the knowledge base operates directly on software artifacts without 
a human-defined vocabulary. The ontology supports semantic 
matching between natural-language user queries and component 
descriptions using a (manually constructed) domain knowledge 
base. The similarity between a software component and a user 
query is defined as the maximum semantic intersection between 
any two sub graphs from the two CGs. This is computed as the 
maximal akin index of the concept’s nodes in the CGs for the 
component and the query. The akin index is calculated as the 
number of links in the ontology between the definitions of pairs 
of concepts. For example, “otter is a mammal is an animal” results 
in an akin index of 2 for the concept pair (otter, animal).
Query Patricia extends Patricia to output metrics that describe the 
degree to which the user query matches the conceptual graphs of the 
observed software. An experiment comparing Query Patricia and 
human experts found that Query Patricia performs satisfactorily 
when compared to the manual approach, which is more accurate, 
tedious, time consuming, and error prone [15]. Finally, the most 
recent study illustrates how free text can be applied during the 
requirements phase where there is a lack of structured information 
[17]. Sterna and Rowe compared requirements from two large 
military systems (containing 577 and 3538 requirements). A 
manual comparison first assigned each requirement a subset 

of 35 keywords. These were used to avoid the 577 3538 pair 
wise comparisons. Only requirements sharing a keyword were 
manually compared. Requirements were also compared using 
cosine similarity based on a variant oftf-idf where idf is replaced 
by a simple word count. As a result, the rate of occurrence in 
all requirements is very significant in this application. Matching 
keywords produced 632 requirement pairs. Of these 453 had at 
least one word in common. However, precision was 0.26% for 90% 
recall and 2.98% for 10% recall. This is quite low, perhaps because 
the requirements used were short, and many differences occur in 
describing the same concept In some of these cases abbreviation 
expansion would help facilitate the matching.

VI. Conclusion
As software becomes ubiquitous, there is a growing need for 
tool support in its construction. Leaving its roots in the compiler 
community, modern tools exploit a wide range of information that 
is of little interest to a compiler. By focusing on IR techniques, 
this entry has presented a collection of such tools that exploit 
information contained in the natural language found in a program 
and its documentation. By organizing the presentation around 
the stages of the software life cycle, the entry highlights trends 
found within each stage and across all stages. An example is the 
growing focus on the text contained in a program’s identifiers and 
its relation to the external documentation. The application of IR to 
SE has given rise to many useful tools in the areas of requirements 
discovery, maintaining software repositories, establishing trace-
ability links, efficient software reuse, and effective software 
metrics. In particular, these tools show that useful information 
can be extracted from the natural-language contained in source 
code’s identifiers and comments as well as other natural-language 
artifacts associated with a software project. Such artifacts can be 
manipulated by tools in tasks that previously required extensive 
human effort or provide an alternative perspective, as in the 
development of effective software metrics. Given that applying 
IR to SE is a relatively young endeavor, many new applications 
are likely to appear. Near term, these can be expected to leverage 
the diversity of new work from the IR community; however, as 
the field matures more IR-based techniques designed explicitly 
to solve SE problems should start to emerge.

References 
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., 

“Identifying the Starting Impact Set of a Maintenance 
Request: A Case Study”, In Proceedings of European 
Conference on Software Maintenance and Reengineering 
(CSMR’00), Zurich, Switzerland, February 29 - March 3 
2000, pp. 227-230. 

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., 
Merlo, E.,“Recovering Traceability Links between Code 
and Documentation”, IEEE Transactions on Software 
Engineering, Vol. 28, No. 10, October 2002, pp. 970 - 983. 

[3] Bigger staff, T. J., Mitbander, B. G., Webster, D. E., “Program 
Understanding and the Concept Assignment Problem”, 
Comm. of the ACM, Vol. 37(5), May 1994, pp. 72-82. 

[4] Chen, K., Rajlich, V.,“Case Study of Feature Location Using 
Dependency Graph”, In Proceedings of Intern. Workshop on 
Program Comprehension (IWPC’00), 2000, pp. 241-249. 

[5] Chen, K., Rajlich, V.,“RIPPLES: Tool for Change in Legacy 
Software”, In Proceedings of International Conference on 
Software Maintenance (ICSM’01), 2001, pp. 230 - 239. 



IJCST  Vol. 7, ISSue 2, AprIl - June 2016  ISSn : 0976-8491 (online)  |  ISSn : 2229-4333 (print)

w w w . i j c s t . c o m 176   InternatIonal Journal of Computer SCIenCe and teChnology

[6] Clayton, R., Rugaber, S., Taylor, L., Wills, L.,“A Case Study 
of Domain-based Program Understanding”, In Proceedings 
of 5th Workshop on Program Comprehension, Dearborn, 
MI, May 28-30 1997, pp. 102-110.

[7] Cubranic, D., Murphy, G. C.,“Hipikat: Recommending 
pertinent software development artifacts”, In Proceedings 
of 25th International Conference on Software Engineering 
(ICSE’03), Portland, OR, May 2003, pp. 408-418. 

[8] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. 
K., Harshman, R.,“Indexing by Latent Semantic Analysis”, 
J. of the Amer. Soc. for Info Science, Vol. 41, 1990, pp. 391-
407.

[9] Eisenbarth, T., Koschke, R., Simon, D.,“Locating Features in 
Source Code”, IEEE Transactions on Software Engineering, 
Vol. 29, No. 3, March 2003, pp. 210 - 224. 

[10] Etzkorn, L. H., Davis, C. G.,“Automatically Identifying 
Reusable OO Legacy Code”, IEEE Computer, Vol. 30, No. 
10, October 1997, pp. 66-72. 

[11] Fischer, B.,“Specification-Based Browsing of Software 
Component Libraries”, In Proceedings of ASE, 1998, pp. 
74-83. 

[12] Fiutem, R., Tonella, P., Antoniol, G., Merlo, E.,“A Cliche’-
Based Environment to Support Architectural Reverse 
Engineering”, In Proceedings of Intern Conference on 
Software Maintenance (ICSM ‘96), Nov 04 - 08 1996, pp. 
319-328. 

[13] Frakes, W.,“Software Reuse Through Information Retrieval”, 
In Proc of HICSS, Kona, HI, Jan. 1987, pp. 530-535.

[14] Landauer, T. K., Foltz, P. W., Laham, D.,“An Introduction 
to Latent Semantic Analysis”, Discourse Processes, Vol. 25, 
No. 2&3, 1998, pp. 259-284. 

[15] Landauer, T. K., Laham, D., Foltz, P. W.,“Learning human-
like knowledge by Singular Value Decomposition: A progress 
report”, Advances in Neural Information Processing Systems, 
Vol. 10, 1998, pp. 45-51.


