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Abstract

Pneumonia is a common respiratory infection caused by bacteria,
viruses, chemicals, or fungi. In 2019, more than 2.5 million people
died from this disease, and is the single largest cause of death in
children under the age of five globally. Diagnosis of pneumonia
typically employs chest radiography, which is visually interpreted
by highly trained radiologists. Given the cost, unavailability, and
fallibility of radiologists, there has been significant interest in
developing machine learning models to automate the diagnostics
process. Recent research has focused on Deep Learning Neural
Network (DNN) and Convolutional Neural Network (CNN) models
to perform medical diagnostic classification. However, in this
study we deployed a capsule based neural network for the detection
of pneumonia in pediatric chest X-ray images. Where traditional
CNN models discard significant image feature information due
to thepooling layers, capsule networks preserve more information
by utilizing vector outputs that encode the probability and pose
for an observation. By preserving pose information, capsule
networks preserve the spatial relationships between features and
are immune translations, rotations, and scaling transformations of
image data. This approach was evaluated on the publicly available
pneumoniaMNIST radiological dataset. The proposed method
achieved a verification accuracy of 98.3%, which exceeds the
performance of models such as ResNet-18, ResNet-50, auto-
sklearn, AutoKeras, and Google AutoML.
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I. Introduction

Pneumonia is the most prevalent cause of mortality in young
children globally [ 1 ]while in high-income countries it is one of the
most common reasons for clinic attendance and hospitalization in
this age group. Furthermore, pneumonia in children increases the
risk of developing chronic pulmonary disorders in later adult life.
While substantial advances in managing childhood pneumonia have
been made, many issues remain, some of which are highlighted
in this perspective. Multiple studies are required as many factors
that influence outcomes, such as etiology, patient characteristics,
and prevention strategies can vary between and within countries
and regions. Also, outside of vaccine studies, most randomized
controlled trials (RCTs. In 2019, more than 2.5 million people
died from pneumonia, and is a huge burden on our healthcare
systems as one of the top ten most expensive inpatient conditions
to diagnose and treat. This disease is more prevalent in developing
countries disadvantaged by a lack of proper medical facilities and
environmental pollution. Pneumonia is also a major problem in
developed countries, since pneumonia is the most common reason
for hospitalization in the US, excluding childbirth [2].

Pneumonia is an inflammatory response to a respiratory infection
which can be caused by bacteria, viruses, chemicals, or fungi.
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Pneumonia causes the lung alveoli to fill with fluids or cells, known
as infiltrates, causing a reduction in diffusion capacity which in
turn reduces blood oxygenation levels. The presence of infiltrates
is detectable by X-rays and creates a discernable attenuation in
radiological images due to the higher ratio of soft tissue to gas
(increased density) relative to that of a healthy lung. Chest X-ray
images are an important tool in the diagnosis of pneumonia [3].

Diagnosis typically requires a visual interpretation of the chest
X-ray images by highly trained radiologists. The World Health
Organization (WHO) estimates that there is a shortage of 4.3
million health professionals globally. Developing nations, rural,
and remote regions suffer the most from this issue [4] the frequency
and clinical impact of errors in the anatomic pathology diagnosis
of cancer have been poorly characterized to date. METHODS.
The authors examined errors in patients who underwent anatomic
pathology tests to determine the presence or absence of cancer or
precancerous lesions in four hospitals. They analyzed | year of
retrospective errors detected through a standardized cytologic-
histologic correlation process (in which patient same-site cytologic
and histologic specimens were compared. Misdiagnosis is also
a serious issue as, in one study, 72 percent of patients were
misdiagnosed with pneumonia upon readmission to the same
hospital [5]. These reasons provide ample motivation for the
implementation of automated image processing techniques for
pneumonia classification.

Machine learning techniques have been used extensively in the
classification of a variety of illnesses, utilizing data from a range of
medical diagnostic tools [6]. Deep learning algorithms can be used
to detect and diagnose pneumonia using only X-ray images, and in
the process saves both money and time. Medical professionals can
also benefit from this approach by efficiently identifying highly
critical patients and reducing misdiagnoses. Recent research has
focused mostly on Deep Learning Neural Network (DNN) and
Convolutional Neural Network (CNN) models to perform this
diagnostic classification.

Traditional CNN models are composed of numerous 2-dimensional
layers which propagate weighted scalar values through the network.
There are two basic types of layers in a CNN: convolutional and
pooling. Convolutional layers utilize ‘kernels’: square scalar
arrays that are iterated over an image, which is a technique
utilized in traditional 2D image processing algorithms [7]. These
scalar parameter values are learned by the network through error
backpropagation. The impact of these kernels is to emphasize
various characteristics of the image, such as vertical, horizontal
lines, corners, etc. Note again that the network learns the kernel
parameters, so the network ‘decides’ the optimal values. Following
the convolutional layers are the pooling layers. The pooling layer
serves to compress the images by reducing each kernel output to
a single scalar value[8]. Here lies the source of one of the most
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serious criticisms of CNN’s, the data reduction in the pooling
layers discard a significant amount of information about the image.
The impact of this data loss is known as the ‘Picasso problem’,
meaning that the relationships between the features lose their
spatial relativity, thus even an obviously scrambled image can
still be considered valid by a CNN [9]. Also, CNNSs are sensitive
to transformations such as 2D and 3D rotations, scale, translation,
and skew. To overcome this limitation, CNNs are typically trained
on augmented data, whereby the images in the original dataset
are subject to a range of thetransformations listed above. While
effective, this augmentation dramatically increases the effective
training dataset size, which in turn increases the training time
[10].

To overcome the limitations of CNN models, we propose to
implement the Capsule Neural Network model. This model is
intended to improve the classification performance and will
be tested on X-Ray image dataset. In section II the Capsule
networkwill be introduced followed by the implementation and
dataset details in section III, then the results in section IV, and
the conclusion in section V.

Il. Proposed Method

A. Capsule Neural Networks

The Capsule network is a relatively new deep learning neural
technique created by Geoffrey Hinton that operates in a
significantly different manner than conventional CNN methods.
Capsule networks differfrom CNNs in three primary ways:

1. The network layers use weighted vectors, not scalars

2. The capsule layers route by agreement, and

3. The network performs inverse graphics [11].

There are two basic parts to the network: the encoder and the
decoder.

B. The Encoder

The training images are first processed by the initial two layers
of the encoder. These initial layers consist of two convolutional
layers identical to those composing a CNN. However, that’s
where the similarity to CNNs end. Capsule network layers utilize
vectors instead of scalar values which are weighted according to
the following:

l.lj" = I‘Ifrjjﬂr'

The output of capsule i is the vector u, which is multiplied by the
scalar weight matrix /¥, and produces the vector i output for the next
level capsulej. These vectors encode the probabilities of a specific
object through their lengths and the vectors directions encode the
state of the detected objects, such as rotation. Now capsule networks
use a new connection method known as ‘routing by agreement.’
The capsules in each layer attempt to predict the output of the next
layer[12]. The better the accuracy of the prediction, or correlation,
the more the capsules are connected through the ‘coupling
coefficient’¢;. The output vector 0_ji is multiplied by this coupling
coefficient and is subject to the following summation formula

&= Zr.:l. {i
where s, is the input of capsule / into the next layer. The value of
¢, above is based on the formula
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where b, is the probability of the connection between capsule i
and capsule /. Note that b, starts out at zero, so there is initially
no effective connection between capsule layers. This softmax
function enhances the largest values and suppresses values which
are significantly below the maximum value, while scaling the
vector such that the outputs add up to 1.
Traditional neural networks subject neuron output into a non-linear
activation function such as Relu or sigmoid, but those functions
can’t be used on vectors, so the Capsule network implements a
squashing function instead:
lIs;II° s
squash(s;) = v; =

ash(5) = = T sy

where v, is the final output of capsule /. This formula normalizes
the vector components to the range of 0 to 1[13]. This function
produces a curve that resembles the upper half of the sigmoid
function, when viewed from 2 dimensions. The probabilities b,
from the softmax (b,) function must be updated using the dot
product of v and 4.

bij = b; + vy

This equation is the key to routing by agreement because the
greater the alignment of the two vectors the more the coupling
coefficient is increased since it is based on bij. [14]

The encoder portion of the network uses the following margin
loss function

Ly = Tpymax (0, m* = [|v.]])?
+ A(1 = T )max (0, || v ]| = m™)?

The hyperparameters m*, m, and A are constants assigned to the
values 0.1, 0.9, and 0.5 respectively, and 7, = 1 only when a
category of class k is present. The loss function is applied to each
of the capsules, and the total loss is simply >, L,. [15]

The number of capsules in the last layer of the encoder correspond
to the number of categories in the dataset. For example, a binary
classification will have two last layer capsules. This last layer
feeds into the encoder portion of the network.

Table 1: Dynamic Routing Function Pseudo-Code

Dynamic routing function
Routing( Gj; . 1. )
foreach capsule iin layer 1
foreach capsule j in layer (1+ 1)
bi 5 —0
foreach r
foreach capsule i in layer 1
¢; < softmax(b;;)
foreach capsule j in layer (1+ 1)

Sj < E Cij Yji

foreach capsule ] ]J; layer (1+1)
vj « squash(s;)
foreach capsule i in layer 1
foreach capsule j in layer (1+ 1)
bij 6= bU o Uj g ﬁﬂ_
return v;
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C. The Decoder

The decoder is composed of fully connected network layers whose
final output matches the size of the input layer. The encoder recreates
the input images and trains the network using backpropagation the
use of a loss function that is simply the N-dimensional Euclidian
distance between the decoded image and the input image. This
image generation technique is referred to as inverse graphics. A
diagram of the network is depicted in Fig. 1.

28 x 28 Input

20 x 20
Convaolution

Fredicted Output
Fig. 1: Capsule Network Diagram
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lil. Implementation

A. Pneumonia Dataset

The capsule network described herein was trained and validated
with the open source pneumoniaMNIST dataset, which is a subset
of the MedMNIST v2 data [16]. This grayscale dataset is based
on a 5,856 pediatric chest X-Ray images which have a range of
sizes: (384—2,916) x (127—2,713). An example of full resolution
pneumonia and normal images are shown in Figure 2. These source
images have been center cropped and resized to 28%28, with 256
levels of grayscale. Figure 3 displays the same two high resolution
images from Fig. 2 but resized to 28x28 pixel resolution. Note
that this resizing causes adramatic reduction in pixel data, blurring
fine anatomical details a radiologist would easily view in the
high-resolution image.

(right)

Fig. 3: Resized 28 x 28 X-Ray Images Pneumonia (left) Normal
(right)

B. Programming and Training

The Capsule network was implemented in Python using Tensorflow,
Keras, and Sklearn, which are all open-source libraries. The
network was trained on Kaggle using GPU acceleration.

The dataset was divided into 5,332 training images and 524 test
images. The original, full-size images were classified by a team
of radiologists into two categories: normal or pneumonia. There
are 1,835 normal and 3,497 pneumonia examples in the training
set and 135 normal and 389 pneumonia examples in the test set.
There was no data augmentation performed on this dataset. After
training, the decoder section of the network outputs similarly
sized recreations of the input images. Some examples of these
predicted outputs and their corresponding input images are shown
in Fig. 4,
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Label:1 Label:0 Label:1 Label:1

Predicted:1 Predicted:0 Predicted:1 Predicted:1
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Fig. 4: Input Images with Predicted Images

IV. Results

The performance of the network was evaluated using the accuracy,
sensitivity, and area under the curve (AUC) metrics. Accuracy and
sensitivity are calculated as follows:

TP+TN
TP+FP+ TN+ FN

accuracy =

sensitivity = - 100%,

T
TP+FN
Where TP is the number of true positives, TN the number of true
negatives, and FN is the number of false negatives, and FP the
false positives. These values and their percentages are listed in
the confusion matrix of Fig. 5.

Confusion Matrix
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Fig. 5: Confusion Matrix

The AUC value is calculated by finding the Receiver Operating
Curve (ROC) which is area under the plot of the True Positive
Rate (TPR) against the False Positive Rate (FPR) at a range of
threshold settings. The ROC curve is depicted in Fig. 6.

ROC curve
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Fig. 6: The ROC curve is depicted
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The performance metric results are listed in Table 2. The AUC
and accuracy numbers are compared to several of the popular
CNN models, such as ResNet and Google AutoML Vision, as
shown in Table 3 [16]a large-scale MNIST-like dataset collection
of\nstandardized biomedical images, including 12 datasets for
2D and 6 datasets for\n3D. All images are pre-processed into a
small size of 28x28 (2D. The capsule network outperformed the
top model, Google AutoML Vision, by 3.7%.

Table 2: Performance Metrics

Metric
AUC Accuracy Sensitivity
996 98.3% 98.7%

Table 3: Capsule Network Performance Comparison

Performance Comparison

Network AUC Accuracy
ResNet-18 (28) 0.944 0.854
ResNet-18 (224) 0.956 0.864
ResNet-50 (28) 0.948 0.854
ResNet-50 (224) 0.962 0.884
auto-sklearn 0.942 0.855
AutoKeras 0.947 0.878
Google AutoML Vision |0.991 0.946
Capsule Network 0.996 0.983

V. Conclusion

Pneumonia is the most prevalent cause of mortality in young
children globally. For the accurate diagnosis and treatment of
pneumonia, knowledge of the state of a patient’s lungs are vital.
Radiological imaging is an effective method of revealing lung
functionality, and the state of disease can be successfully diagnosed.
The open source pneumoniaMNIST database, which is composed
of 5,856 28x28 grayscale pediatric radiology images, was utilized
for training and testing data. By implementing machine learning
classification using Capsule neural networks on these images,
machine diagnostic efficacy that rivals that of human experts was
demonstrated. Despite the low resolution of the dataset, the method
described was able to achieve a verification accuracy of 98.3%.
These results are a significant improvement in accuracy over other
state of the art methods and did not require data augmentation
typical of CNN models.
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