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Abstract
Pneumonia is a common respiratory infection caused by bacteria, 
viruses, chemicals, or fungi. In 2019, more than 2.5 million people 
died from this disease, and is the single largest cause of death in 
children under the age of five globally. Diagnosis of pneumonia 
typically employs chest radiography, which is visually interpreted 
by highly trained radiologists. Given the cost, unavailability, and 
fallibility of radiologists, there has been significant interest in 
developing machine learning models to automate the diagnostics 
process. Recent research has focused on Deep Learning Neural 
Network (DNN) and Convolutional Neural Network (CNN) models 
to perform medical diagnostic classification. However, in this 
study we deployed a capsule based neural network for the detection 
of pneumonia in pediatric chest X-ray images. Where traditional 
CNN models discard significant image feature information due 
to thepooling layers, capsule networks preserve more information 
by utilizing vector outputs that encode the probability and pose 
for an observation. By preserving pose information, capsule 
networks preserve the spatial relationships between features and 
are immune translations, rotations, and scaling transformations of 
image data. This approach was evaluated on the publicly available 
pneumoniaMNIST radiological dataset. The proposed method 
achieved a verification accuracy of 98.3%, which exceeds the 
performance of models such as ResNet-18, ResNet-50, auto-
sklearn, AutoKeras, and Google AutoML.
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I. Introduction
Pneumonia is the most prevalent cause of mortality in young 
children globally [1]while in high-income countries it is one of the 
most common reasons for clinic attendance and hospitalization in 
this age group. Furthermore, pneumonia in children increases the 
risk of developing chronic pulmonary disorders in later adult life. 
While substantial advances in managing childhood pneumonia have 
been made, many issues remain, some of which are highlighted 
in this perspective. Multiple studies are required as many factors 
that influence outcomes, such as etiology, patient characteristics, 
and prevention strategies can vary between and within countries 
and regions. Also, outside of vaccine studies, most randomized 
controlled trials (RCTs. In 2019, more than 2.5 million people 
died from pneumonia, and is a huge burden on our healthcare 
systems as one of the top ten most expensive inpatient conditions 
to diagnose and treat. This disease is more prevalent in developing 
countries disadvantaged by a lack of proper medical facilities and 
environmental pollution. Pneumonia is also a major problem in 
developed countries, since pneumonia is the most common reason 
for hospitalization in the US, excluding childbirth [2].

Pneumonia is an inflammatory response to a respiratory infection 
which can be caused by bacteria, viruses, chemicals, or fungi.  

 
Pneumonia causes the lung alveoli to fill with fluids or cells, known 
as infiltrates, causing a reduction in diffusion capacity which in 
turn reduces blood oxygenation levels. The presence of infiltrates 
is detectable by X-rays and creates a discernable attenuation in 
radiological images due to the higher ratio of soft tissue to gas 
(increased density) relative to that of a healthy lung. Chest X-ray 
images are an important tool in the diagnosis of pneumonia [3]. 

Diagnosis typically requires a visual interpretation of the chest 
X-ray images by highly trained radiologists. The World Health 
Organization (WHO) estimates that there is a shortage of 4.3 
million health professionals globally. Developing nations, rural, 
and remote regions suffer the most from this issue [4] the frequency 
and clinical impact of errors in the anatomic pathology diagnosis 
of cancer have been poorly characterized to date. METHODS. 
The authors examined errors in patients who underwent anatomic 
pathology tests to determine the presence or absence of cancer or 
precancerous lesions in four hospitals. They analyzed 1 year of 
retrospective errors detected through a standardized cytologic-
histologic correlation process (in which patient same-site cytologic 
and histologic specimens were compared. Misdiagnosis is also 
a serious issue as, in one study, 72 percent of patients were 
misdiagnosed with pneumonia upon readmission to the same 
hospital [5]. These reasons provide ample motivation for the 
implementation of automated image processing techniques for 
pneumonia classification.

Machine learning techniques have been used extensively in the 
classification of a variety of illnesses, utilizing data from a range of 
medical diagnostic tools [6]. Deep learning algorithms can be used 
to detect and diagnose pneumonia using only X-ray images, and in 
the process saves both money and time. Medical professionals can 
also benefit from this approach by efficiently identifying highly 
critical patients and reducing misdiagnoses. Recent research has 
focused mostly on Deep Learning Neural Network (DNN) and 
Convolutional Neural Network (CNN) models to perform this 
diagnostic classification. 

Traditional CNN models are composed of numerous 2-dimensional 
layers which propagate weighted scalar values through the network. 
There are two basic types of layers in a CNN: convolutional and 
pooling. Convolutional layers utilize ‘kernels’: square scalar 
arrays that are iterated over an image, which is a technique 
utilized in traditional 2D image processing algorithms [7]. These 
scalar parameter values are learned by the network through error 
backpropagation. The impact of these kernels is to emphasize 
various characteristics of the image, such as vertical, horizontal 
lines, corners, etc. Note again that the network learns the kernel 
parameters, so the network ‘decides’ the optimal values. Following 
the convolutional layers are the pooling layers. The pooling layer 
serves to compress the images by reducing each kernel output to 
a single scalar value[8]. Here lies the source of one of the most 
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serious criticisms of CNN’s, the data reduction in the pooling 
layers discard a significant amount of information about the image. 
The impact of this data loss is known as the ‘Picasso problem’, 
meaning that the relationships between the features lose their 
spatial relativity, thus even an obviously scrambled image can 
still be considered valid by a CNN [9]. Also, CNNs are sensitive 
to transformations such as 2D and 3D rotations, scale, translation, 
and skew. To overcome this limitation, CNNs are typically trained 
on augmented data, whereby the images in the original dataset 
are subject to a range of thetransformations listed above. While 
effective, this augmentation dramatically increases the effective 
training dataset size, which in turn increases the training time 
[10].

To overcome the limitations of CNN models, we propose to 
implement the Capsule Neural Network model. This model is 
intended to improve the classification performance and will 
be tested on X-Ray image dataset. In section II the Capsule 
networkwill be introduced followed by the implementation and 
dataset details in section III, then the results in section IV, and 
the conclusion in section V.

II. Proposed Method

A. Capsule Neural Networks
The Capsule network is a relatively new deep learning neural 
technique created by Geoffrey Hinton that operates in a 
significantly different manner than conventional CNN methods. 
Capsule networks differfrom CNNs in three primary ways:

The network layers use weighted vectors, not scalars1.	
The capsule layers route by agreement, and2.	
The network performs inverse graphics [11].3.	

There are two basic parts to the network: the encoder and the 
decoder.

B. The Encoder
The training images are first processed by the initial two layers 
of the encoder. These initial layers consist of two convolutional 
layers identical to those composing a CNN. However, that’s 
where the similarity to CNNs end. Capsule network layers utilize 
vectors instead of scalar values which are weighted according to 
the following: 

 
The output of capsule i is the vector ui which is multiplied by the 
scalar weight matrix Wij and produces the vector ûji output for the next 
level capsule j. These vectors encode the probabilities of a specific 
object through their lengths and the vectors directions encode the 
state of the detected objects, such as rotation. Now capsule networks 
use a new connection method known as ‘routing by agreement.’ 
The capsules in each layer attempt to predict the output of the next 
layer [12].  The better the accuracy of the prediction, or correlation, 
the more the capsules are connected through the ‘coupling 
coefficient’ cij. The output vector û_ji is multiplied by this coupling 
coefficient and is subject to the following summation formula 

where sj is the input of capsule j into the next layer. The value of 
cij above is based on the formula 

where bij is the probability of the connection between capsule i 
and capsule j.  Note that bij starts out at zero, so there is initially 
no effective connection between capsule layers. This softmax 
function enhances the largest values and suppresses values which 
are significantly below the maximum value, while scaling the 
vector such that the outputs add up to 1.
Traditional neural networks subject neuron output into a non-linear 
activation function such as Relu or sigmoid, but those functions 
can’t be used on vectors, so the Capsule network implements a 
squashing function instead:

where vj is the final output of capsule j. This formula normalizes 
the vector components to the range of 0 to 1[13].  This function 
produces a curve that resembles the upper half of the sigmoid 
function, when viewed from 2 dimensions. The probabilities bij 
from the softmax (bij) function must be updated using the dot 
product of vj and ûji.  

This equation is the key to routing by agreement because the 
greater the alignment of the two vectors the more the coupling 
coefficient is increased since it is based on bij. [14]

The encoder portion of the network uses the following margin 
loss function

 
The hyperparameters m+, m-, and λ are constants assigned to the 
values 0.1, 0.9, and 0.5 respectively, and Tk = 1 only when a 
category of class k is present.  The loss function is applied to each 
of the capsules, and the total loss is simply ∑k Lk. [15]

The number of capsules in the last layer of the encoder correspond 
to the number of categories in the dataset. For example, a binary 
classification will have two last layer capsules. This last layer 
feeds into the encoder portion of the network.

Table 1: Dynamic Routing Function Pseudo-Code
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C. The Decoder
The decoder is composed of fully connected network layers whose 
final output matches the size of the input layer. The encoder recreates 
the input images and trains the network using backpropagation the 
use of a loss function that is simply the N-dimensional Euclidian 
distance between the decoded image and the input image. This 
image generation technique is referred to as inverse graphics. A 
diagram of the network is depicted in Fig. 1.

Fig. 1: Capsule Network Diagram

III. Implementation

A. Pneumonia Dataset
The capsule network described herein was trained and validated 
with the open source pneumoniaMNIST dataset, which is a subset 
of the MedMNIST v2 data [16].  This grayscale dataset is based 
on a 5,856 pediatric chest X-Ray images which have a range of 
sizes: (384−2,916) × (127− 2,713).  An example of full resolution 
pneumonia and normal images are shown in Figure 2. These source 
images have been center cropped and resized to 28×28, with 256 
levels of grayscale.  Figure 3 displays the same two high resolution 
images from Fig. 2 but resized to 28x28 pixel resolution. Note 
that this resizing causes adramatic reduction in pixel data, blurring 
fine anatomical details a radiologist would easily view in the 
high-resolution image.

 
Fig. 2: Full Resolution X-Ray Images Pneumonia (left) Normal 
(right)

Fig. 3: Resized 28 x 28 X-Ray Images Pneumonia (left) Normal 
(right)

B. Programming and Training
The Capsule network was implemented in Python using Tensorflow, 
Keras, and Sklearn, which are all open-source libraries. The 
network was trained on Kaggle using GPU acceleration.

The dataset was divided into 5,332 training images and 524 test 
images. The original, full-size images were classified by a team 
of radiologists into two categories: normal or pneumonia. There 
are 1,835 normal and 3,497 pneumonia examples in the training 
set and 135 normal and 389 pneumonia examples in the test set. 
There was no data augmentation performed on this dataset.After 
training, the decoder section of the network outputs similarly 
sized recreations of the input images. Some examples of these 
predicted outputs and their corresponding input images are shown 
in Fig. 4,
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Fig. 4: Input Images with Predicted Images

IV. Results
The performance of the network was evaluated using the accuracy, 
sensitivity, and area under the curve (AUC) metrics. Accuracy and 
sensitivity are calculated as follows:

Where TP is the number of true positives, TN the number of true 
negatives, and FN is the number of false negatives, and FP the 
false positives. These values and their percentages are listed in 
the confusion matrix of Fig. 5.

Fig. 5: Confusion Matrix

The AUC value is calculated by finding the Receiver Operating 
Curve (ROC) which is area under the plot of the True Positive 
Rate (TPR) against the False Positive Rate (FPR) at a range of 
threshold settings. The ROC curve is depicted in Fig. 6.

Fig. 6: The ROC curve is depicted

The performance metric results are listed in Table 2. The AUC 
and accuracy numbers are compared to several of the popular 
CNN models, such as ResNet and Google AutoML Vision, as 
shown in Table 3 [16]a large-scale MNIST-like dataset collection 
of\nstandardized biomedical images, including 12 datasets for 
2D and 6 datasets for\n3D. All images are pre-processed into a 
small size of 28x28 (2D. The capsule network outperformed the 
top model, Google AutoML Vision, by 3.7%.

Table 2: Performance Metrics
Metric

AUC Accuracy Sensitivity
.996 98.3% 98.7%

Table 3: Capsule Network Performance Comparison

Performance Comparison

Network AUC Accuracy
ResNet-18 (28) 0.944 0.854
ResNet-18 (224) 0.956 0.864
ResNet-50 (28) 0.948 0.854
ResNet-50 (224) 0.962 0.884
auto-sklearn 0.942 0.855
AutoKeras 0.947 0.878
Google AutoML Vision 0.991 0.946
Capsule Network 0.996 0.983

V. Conclusion
Pneumonia is the most prevalent cause of mortality in young 
children globally. For the accurate diagnosis and treatment of 
pneumonia, knowledge of the state of a patient’s lungs are vital. 
Radiological imaging is an effective method of revealing lung 
functionality, and the state of disease can be successfully diagnosed. 
The open source pneumoniaMNIST database, which is composed 
of 5,856 28x28 grayscale pediatric radiology images, was utilized 
for training and testing data. By implementing machine learning 
classification using Capsule neural networks on these images, 
machine diagnostic efficacy that rivals that of human experts was 
demonstrated. Despite the low resolution of the dataset, the method 
described was able to achieve a verification accuracy of 98.3%. 
These results are a significant improvement in accuracy over other 
state of the art methods and did not require data augmentation 
typical of CNN models.
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