
Abstract
When more than one process is runable, the operating system
must decide which one first. Scheduling refers to a set of policies
and mechanisms built into the operating system that govern the
order in which work to be done by a computer is completed.
Many objectives must be considered in the design of a scheduling
discipline. In particular, a scheduler should consider fairness,
efficiency, response time, turnaround time, throughput, etc., Some
of these goals depends on the system one is using for example
batch system, interactive system or real-time system, etc. but there
are also some goals that are desirable in all systems. A scheduling
discipline is preemptive if, once a process has been given the CPU
can taken away. Among the non preemptive processes the most
commonly used scheduling policies are FCFS and SJF. A method
which is discussed here shows much better performance than
FCFS which works with the principle of mixing jobs. According
to this method, from a list of N jobs, the job that needs minimum
CPU time is executed first and then the highest form the list and
so on till the Nth job. Through this method we can easily compare
b/w FCFS & MIX job scheduling.

Keywords
FCFS, SJF, Scheduler, Waiting Time, Turnaround Time.

I. Introduction
"Scheduling is an activity that will be done by the operating system
component called the Scheduler. The purpose of the scheduler is to
choose processes from the list of ready processes". Scheduling is a
key concept in computer multitasking, multiprocessing operating
system and real-time operating system designs. Scheduling refers
to the way processes are assigned to run on the available CPUs,
since there are typically many more processes running than there
are available CPUs. With time sharing system the scheduling
algorithm becomes more complex because there are generally
multiple users waiting for service. Some mainframes still combine
batch and timesharing service, requiring the scheduler to decide
whether a batch job or an interactive user at a terminal should go
next. The scheduling algorithm differs from one another only on
the choice of the processes given preferential treatment.

The performance improvement (example: Reduction of the
response time) of one category of processes can be achieved only
at the expense of performance degradation of processes in another
category. There is a no single best scheduling algorithm that is
good for all processes. Each operating system employs a different
flavor of scheduling algorithm. The CPU scheduler occupies the
tiny portion of the operating system but execute very frequently,
especially in time sharing systems. Therefore the algorithm should
reach a decision quickly, for which it must be simple and efficient.
With the introduction of personal computers the situation changed
in two ways. First most of the time there is only one active process.
A user typing a document on a word processor is not likely to be
simultaneously compiling a program in the background. when the
user types a command to the word processor the scheduler does
not have to do much work to choose which process to run as the
only processes is running on the word processor.

II. Need And Purpose For Scheduling
The main purpose of scheduling algorithms is to minimise resource
starvation and to ensure fairness amongst the parties utilizing the
resources. Scheduling deals with the problem of deciding which of
the outstanding requests is to be allocated resources. Scheduling
disciplines are algorithms used for distributing resources among
parties which simultaneously and asynchronously request them.
Scheduling disciplines are used in routers (to handle packet traffic)
as well as in operating systems (to share CPU time among both
threads and processes), disk drives (I/O scheduling), printers (print
spooler), most embedded systems etc.

A. CPU Utilization
We want to keep the CPU as busy as possible. The load on the
system affects the level of utilization that can be achieved; high
utilization is more easily achieved on more heavily loaded systems.
The importance of this criterion typically varies depending on
the degree the system is shared. On a single user system, CPU
utilization is relatively unimportant.

B. Balanced Utilization
The percentage of time all resources are utilized. Instead of just
evaluating CPU utilization, utilization of memory, I/O devices,
and other system resources are also considered.

C. Throughput
If the CPU is busy executing processes, then work is being done.
One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate
may be one process per hour; for short transactions, it may be 10
processes per second.

D. Turnaround time
From the point of view of a particular process, the important
criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion
is the turnaround time. Turnaround time is the sum of the periods
spent waiting to get into memory, waiting in the ready queue,
executing on the CPU, and doing I/O.

E. Waiting time
The CPU scheduling algorithm does not affect the amount of the
time during which a process executes or does I/O; it affects only
the amount of time that a process spends waiting in the ready
queue. Waiting time is the sum of periods spends waiting in the
ready queue.

F. Response time
In an interactive system, turnaround time may not be the best
criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are
being output to the user. Thus, another measure is the time from
the submission of a request until the first response is produced.
This measure, called response time, is the time it takes to start
responding, not the time it takes to output the response. The
turnaround time is generally limited by the speed of the output
device.

A Comparison between FCFS and Mixed Scheduling
Alka Pant

Dept. of Computer Science, College of Professional Education, Meerut, UP, India

76  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

G. Predictability
Lack of variability in other measures of performance. Users prefer
consistency. For example, an interactive system that routinely
responds within a second, but on occasion takes 10s to respond,
may be viewed more negatively than a system that consistently
responds in 2s.

H. Fairness
Fairness is important under all circumstances. A scheduler makes
sure that each process gets its fair share of the CPU and no process
can suffer indefinite postponement. Note that giving equivalent
or equal time is not fair. Think of safety control and payroll at a
nuclear plant.
A key issue related to scheduling is when to make scheduling
decisions. It turns out that there are a variety of situations in
which scheduling is needed. First when a new process is created,
a decision needs to be made whether to run the parent process or
the child process. Since both processes are in ready state, it is a
normal scheduling decision and it can go either way that is the
scheduler can legitimately choose to run either the parent or the
child next. An accurate illustration should involve many processes,
each being a sequence of several hundred CPU bursts and I/O
bursts. For simplicity of illustration, we consider only one CPU
burst per process in our examples. Our measure of comparison
is the average waiting time.

III. Non Preemptive and Preempive Scheduling
A scheduling discipline is nonpreemptive, if once a process has
been given the CPU, the CPU cannot be taken away from that
process.
Following are some characteristics of nonpreemptive
scheduling
a)	 In nonpreemptive system, short jobs are made to wait by

longer jobs but the overall treatment of all processes is
fair.

b)	 In nonpreemptive system, response times are more predictable
because incoming high priority jobs can not displace waiting
jobs.

c)	 In nonpreemptive scheduling, a schedular executes jobs in
the following two situations.
When a process switches from running state to the waiting •	
state.
When a process terminates.•	

Following are some characteristics of preemptive scheduling-
a)	 Yank the CPU away from the currently executing process

when a higher priority process is ready.
b)	 Can be applied to both Shortest Job First or to Priority

scheduling.
c)	 Avoids "hogging" of the CPU
d)	 On time sharing machines, this type of scheme is required

because the CPU must be protected from a run-away low
priority process.

e)	 Give short jobs a higher priority – perceived response time
is thus better.

f)	 What are average queueing and residence times? Compare
with FCFS.

IV. Categories Of Scheduling Algorithms
In different environments different scheduling algorithms are
needed. This situation arises because different application areas
have different goals. There different environments are -
1. Batch

2. Interactive

Goals for batch and interactive systems
1. Provide fairness
2. Everyone makes some progress; no one starves
3. Maximize CPU utilization

Not including idle process•	
4. Maximize throughput

Operations/second (min overhead, max resource •	
utilization)

5. Minimize turnaround time:
Batch jobs: time to execute (from submission to •	
completion)

6. Shorten response time
Interactive jobs: time response (e.g. typing on a keyboard)•	

7. Proportionality
Meets user’s expectations•	

In Batch System there are no users impatiently waiting at their
terminal for a quick response. Consequently non preemptive
algorithms or preemptive algorithms with long time periods
reduces process are often acceptable. This approach reduces
process switches and thus improves performance.
In Interactive systems, preemptive is essential to keep one process
from hogging the CPU and denying service to the others.

V. Scheduling of Batch Systems
The two most commonly used algorithms for batch processing
system are FCFS (First Come First Served) and SJF (Shortest
Job First).

A. FCFS
First Come, First Served (FCFS), is the simplest scheduling
algorithm, FIFO simply queues processes in the order that they
arrive in the ready queue. Since context switches only occur upon
process termination, and no reorganization of the process queue is
required, scheduling overhead is minimal The FCFS scheduling is
fair in the formal sense or human sense of fairness but it is unfair
in the sense that long jobs make short jobs wait and unimportant
jobs make important jobs wait.
FCFS is more predictable than most of other schemes since it
offers time. FCFS scheme is not useful in scheduling interactive
users because it cannot guarantee good response time. The code
for FCFS scheduling is simple to write and understand.

1. Advantage
It is easy to understand and easy to program. It is also fair. A single
linked list keeps track of all ready processes. Picking a process
to run just requires removing one from the front of the queue.
Adding a new job or unblocked process just requires attaching it
to the end of the queue.

2. Disadvantage
•	 Throughput can be low, since long processes can hog the

CPU
•	 Turnaround time, waiting time and response time can be low

for the same reasons above.
•	 Processing time of each job must be known in advance.

Suitable only for batch process.
•	 One of the major drawback of this scheme is that the average

time is often quite long.

  International Journal of Computer Science and Technology  77

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 2, June 2011

B. SJF
Shortest Job First (SJF), with this strategy the scheduler arranges
processes with the least estimated processing time remaining to be
next in the queue. This requires advance knowledge or estimations
about the time required for a process to complete.
•	 If a shorter process arrives during another process' execution,

the currently running process may be interrupted, dividing
that process into two separate computing blocks. This creates
excess overhead through additional context switching. The
scheduler must also place each incoming process into a
specific place in the queue, creating additional overhead.

•	 This algorithm is designed for maximum throughput in most
scenarios.

•	 Waiting time and response time increase as the process'
computational requirements increase. Since turnaround
time is based on waiting time plus processing time, longer
processes are significantly affected by this. Overall waiting
time is smaller than FCFS, however since no process has to
wait for the termination of the longest process.

•	 No particular attention is given to deadlines, the programmer
can only attempt to make processes with deadlines as short
as possible.

•	 Starvation is possible, especially in a busy system with many
small processes being run.

1. Advantage
Best scheduling algorithm for shortest jobs. Waiting time and turn
around time are less compared to FCFS.

2. Disadvantage
Long jobs may wait longer than in FCFS because it has to wait
not only for jobs that are in the system at the time of its arrival,
but also for all short jobs that are in the system at the time of its
arrival, but also for all shorter jobs that arrive subsequently while
it is waiting for service.

C. JOB MIX (JM)
n this method from the queue of jobs another queue is maintained
which contain the shortest job first then the highest job, again
shortest of the remaining and then highest of the remaining.
First job in the queue is executed first and then the second and if
suspended conditions arise they are blocked till the condition is
satisfied and send back to the queue. The process will be executed
again as its turn comes in the queue. Using this method we can
eliminate the starvation of longer jobs compared to shortest
job method and it provides better turn around and waiting time
compared to the FCFS method.

1. Advantage
Better turn around and wait time compared to FCFS scheduling.
Method is simple and easy to implement. Satisfies various criteria
that constitutes a good scheduling algorithm such as -
Fairness: make sure that each process gets its fair share of the
CPU.
Efficiency: Keep the CPU busy 100 of the time.
Turnaround time: minimize the time batch users must wait for
output.
Wait time: minimize the wait time of the process compared to
FCFS.

2. Disadvantage
The over head of maintaining a second queue is there which when

compared to FCFS is little complex.

PROBLEM 1 (JOB ARRIVING AT THE SAME TIME)

FCFS

Job
No

Process CPU
Time

Turnaround
Time

Waiting
Time

Waiting
Turnaround
Time

1
2
3
4

A
B
C
D

3.00
6.00
4.00
2.00

3.00
9.00
13.00
15.00

0.00
3.00
9.00
13.00

1.00
1.50
3.25
7.50

Average Turnaround Time = 10.00
Average Waiting Time = 6.25
Average Weighted Turnaround Time = 3.31

Gantt Chart
A B C D

 0	 3	 9	 13 	 15

Job Mixing
Job
No

Process CPU
Time

Job
Order-
ing

Turn-
around
Time

Waiting
Time

Waiting
Tur
around
Time

1
2
3
4

A
B
C
D

3.00
6.00
4.00
2.00

2.00
6.00
3.00
4.00

2.00
8.00
11.00
15.00

0.00
2.00
8.00
11.00

1.00
1.33
3.66
3.75

Average Turnaround Time = 9.00
Average Waiting Time = 5.25
Average Weighted Turnaround Time = 2.43

Gantt Chart
A B C D

0	 2	 8	 11	 15

PROBLEM 2
FCFS
Job
No

Process CPU
Time

Turnaround
Time

Waiting
Time

Waiting
Turnaround Time

1
2
3
4
5

A
B
C
D
E

12.00
14.00
7.00
6.00
2.00

12.00
26.00
33.00
39.00
41.00

0.00
12.00
26.00
33.00
39.00

1.00
1.85
4.71
6.50
20.5

Average Turnaround Time = 30.20
Average Waiting Time = 22.00
Average Weighted Turnaround Time = 6.91

Gantt Chart
A B C D E

0	 12	 26	 33	 39	 41

78  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

Job Mixing
Job
No

Process CPU
Time

Job
ordering

Turn-
around
Time

Waiting
Time

Waiting
Turn-
around
Time

1
2
3
4
5

A
B
C
D
E

12.00
14.00
7.00
6.00
2.00

2.00
14.00
6.00
12.00
7.00

2.00
16.00
22.00
34.00
41.00

0.00
2.00
16.00
22.00
34.00

1.00
1.14
3.66
2.83
5.85

Average Turnaround Time = 23.00
Average Waiting Time = 14.8
Average Weighted Turnaround Time = 2.89

Gantt Chart
A B C D E

0	 2	 16	 22	 34	 41

VI. CONCLUSION
Mix scheduling is better than FCFS by all means. We can solve
the problems easily using the mix scheduling. It provides better
turnaround time and waiting time for jobs whose execution time
is known in advance.

VII. Acknowledgement
I am heartily thankful to Dr. (Mrs) Shilpi Gupta, Associate
Professor, Amrapali Institute, Haldwani whose encouragement,
guidance and support from the initial to the final level enabled
me to develop an understanding of the subject.
Lastly, I offer my regards and blessings to all of those who supported
me in any respect during the completion of my research.

References
[1]	 Abraham Silberschatz, Peter B. Galvin, Greg Gagne,

“Operating System Concepts”, John Wiley & Sons, United
States, 2005.

[2]	 Andrew S. Tanenbaum, Albert S. Woodhull, “Modern
Operating Systems Second Edition”, Prentice Hall of India,
New Delhi, 2001.

[3]	 Andrew S. Tanenbaum, Albert S. Woodhull, “Operating
Systems Design and Implementation”, Prentice Hall of India,
New Delhi, 2010.

[4]	 Charles Crowley, “Operaing Systems”, Tata McGraw-Hill
Publishing Company Ltd, New Delhi, 1997.

[5]	 D.M. Dhamdhere, “Systems Programming And Operating
Systems”, Tata McGraw-Hill Publishing Company Ltd, New
Delhi, 1996.

[6]	 Ida M. Flynn, Ann McIver McHoes, “Understanding
Operating Systems”‎, Thomson Press, Mumbai, 2005.

[7]	 Sibsankar Haldar, Alex A. Aravind, “Operating Systems‎,
Pearson Education India, Delhi, 2010.

[8]	 Silberschatz, Galvin, “Operating System Concepts Seventh
Edition”, John Wiley & Sons.Inc, United States, 2006.

[9]	 [Online] Available : www. Articles.Assyriancafe.Com/
Documents/CPU_Scheduling.Pdf

[10]	[Online] Available : www. emerald.com

Alka Pant received his M.C.A degree from
U.P. Technical University, Lucknow in
2006, the Certification from Sun Micro-
systems in Advanced Java in 2008 and the
M.Phil degree in Computer Science from
Vinayaka University, Tamil Nadu in 2008.
His research interests include networking,
algorithm, and computer graphics. She has
around 5 years of teaching experience and
authored 3 books. At present, she is engaged
in teaching as an Assistant Professor in

Computer Science Department of Swami Darshnanand Institute of
Management and Technology (SDIMT), Haridwar, Uttarakhand.
She has also as an Associate Editorship in the ‘Advanced Journal
of Computer Science’ of Society of Educational and Applied
Research and Technology, publication (SEART) Meerut.

  International Journal of Computer Science and Technology  79

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 2, June 2011

