
Abstract
This paper is aimed to report the experiment in revealing the 
classification of randomized thermograms tabulated by the first 
order statistics method including the mean values, skewness 
values, entropy values, kurtosis values, and variance values with 
the thermal camera of Fluke as a tool for capturing images, after 
the mathematical method of measurement. Five statistical features 
combined with principal component analysis (PCA) have been 
applied in this research to classify the types of thermograms after 
the image preprocessing. The results show that the method is quite 
promising to distinguish the thermal images.
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I. Introduction
PCA is a useful statistical technique that has found an application 
in fields such as face recognition and image compression, and 
also as a common technique for finding patterns in data of high 
dimension. PCA is used abundantly in all forms of analysis - 
from neuroscience to computer graphics - because it is a simple, 
non-parametric method of extracting relevant information from 
confusing data sets. With minimal additional effort PCA could 
provide a roadmap for how to reduce a complex data set to a 
lower dimension to reveal the sometimes hidden, simplified 
dynamics that often underlie it. Principal component analysis is 
a pre-processing transformation that creates new images from the 
uncorrelated values of different images. This is then accomplished 
by a linear transformation of variables corresponding to a rotation 
and translation of the original coordinate system. It refers to a way 
of identifying patterns in data, and expressing the data in such a 
way as to highlight their similarities and differences. Since patterns 
in data could be difficult to find in data of high dimension, where 
the luxury of graphical representation is not available, PCA in 
return is becoming a powerful tool for analyzing the data.
The first principal component (the eigenvector with the largest 
eigenvalue) corresponds to a line that passes through the mean 
and minimizes sum squared error with those points. The second 
principal component corresponds to the same concept after all 
correlation with the first principal component has been subtracted 
out from the points. Each eigenvalue indicates the portion of the 
variance that is correlated with each eigenvector. Thus, the sum 
of all the eigenvalues is equal to the sum squared distance of the 
points with their mean divided by the number of dimensions. PCA 
essentially rotates the set of points around their mean in order to 
align with the first few principal components. This moves as much 
of the variance as possible (using a linear transformation) into the 

first few dimensions. The values in the remaining dimensions, 
therefore, tend to be highly correlated and may be dropped with 
minimal loss of information. PCA is often used in this manner 
for dimensionality reduction. PCA has the distinction of being the 
optimal linear transformation for keeping the subspace that has 
largest variance. This advantage, however, comes at the price of 
greater computational requirement if compared, for example, to 
the discrete cosine transform. Nonlinear dimensionality reduction 
techniques tend to be more computationally demanding than 
PCA.
Another main advantage of PCA is that once the patterns in the data 
have been found and the data and examples have been compressed, 
by reducing the number of dimensions, the information in it would 
not be much in lost.  Five features namely mean value, entropy 
value, skewness value, kurtosis value, and variance value were 
applied in this research and been plotted in a two-dimension graph 
to classify the types of the thermogram images.

II. The Underlying Theory 
To probe further thermal images, some standard image processes 
such as resizing images into 256x256 pixels and converting true 
color into grayscale thermograms were applied. The statistical 
method was used to extract the texture feature of an image such 
as mean value, entropy value, skewness value, kurtosis value, 
and variance value. Image characteristics such as the arranged 
pixel intensity and statistical texture feature were counted from 
the image intensity.
In this case, the first order statistics were applied after image 
preprocessing of the thermograms to obtain the matrix data. Then 
the process of classification was carried out to separate normal, 
chemotherapy, and advanced thermograms from random thermal 
images. 
Hence the objective of the research is to analyze the types of 
thermograms by applying the measurement of mean value, entropy 
value, skewness value, kurtosis value, and variance value from 
images, and principal component analysis method.

III. Materials and Methods
The present research was performed at Dr.Sarjito Hospital 
Yogyakarta in which 150 women were examined. Digital thermal 
camera Fluke was used for thermogram acquisition. Three groups 
were then assigned including Healthy Group consisted of 50 
images, Chemotherapy Group with 50 images, and Advanced 
Group with 50 images.
Several methods in the image processing included resizing image 
and converting true color image to grayscale image.
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A. Resizing Image
To resize an image, the imresize function in matlab was used. The 
images then were converted to be 256x256 pixels in obtaining a 
square matrix from images and mathematical accounting could 
be much easier by application of PCA technique.

B. Grayscale Image
The objective in converting true color to grayscale is to enhance the 
computation with the program and to make it easier in accounting 
statistical feature extraction, namely mean value and entropy value 
from gray level histogram. 

C. Statistical Feature Extraction
Feature extraction is the process of defining a set of features, or 
image characteristics, which will most efficiently or meaningfully 
represent the information that is important for analysis and 
classification. Much of the information in the data set may be of 
little value for discrimination. Indeed, pattern recognition using 
the original measurements is frequently inefficient and may even 
obscure interpretation. First order statistics or moments of the gray 
level histogram are the nth moment of the (normalized) gray level 
histogram is given by:
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where:
ki = gray value of the ith pixel
mean = mean gray value of the pixel set
L = the number of distinct gray levels
p(ki) = normalized histogram (probability density function of the 
pixel set).
Note that the mean is given by: 
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Thus: μ0 = 1; μ1 = 0; μ2 = s2 = variance
Variance is a square of standard deviation. The variance is given 
by:
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where N is total number of pixel in an image.
Skewness is a measure of the asymmetry of the data around the 
sample mean. If skewness is negative, the data are spread out more 
to the left of the mean than to the right. If skewness is positive, the 
data are spread out more to the right. The skewness of the normal 
distribution (or any perfectly symmetric distribution) is zero.
The skewness is given by:
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Kurtosis is a measure of how outlier-prone a distribution is. The 
kurtosis of the normal distribution is 3. Distributions that are more 
outlier-prone than the normal distribution have kurtosis greater 
than 3; distributions that are less outlier-prone have kurtosis less 
than 3.
The kurtosis is given by:
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Entropy is a statistical measure of randomness that can be used 

to characterize the texture of the input image. Entropy is defined 
as:
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D. Step of PCA
Step 1: Getting some data. 
In this research, three commands (load normal.dat, chemotherapy.
dat, and advanced.dat) were applied.  When using these sort of 
matrix techniques in computer vision, representation of image 
must be well considered. A square, N . by . N image can be 
expressed as an . N2 dimensional vector:
X = (x1,x2,… xn)
where the rows of pixels in the image are placed one after the 
other to form a one-dimensional image.
Step 2: Subtracting the raw data with mean of the all data
The equation of the mean data was used as follows:
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Step 3: Calculating  the covariance matrix
Covariance is such a measure and always be measured between 
2 dimensions. The formula for covariance is quite  similar to the 
formula for variance. The formula for covariance could also be 
written like this:
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Step 4: Calculating the eigenvectors and eigenvalues of the 
covariance matrix.
Let P has coordinates (x, y) relative to the x, y axes and coordinates 
(x1, y1) relative to the x1, y1 axes.

Fig. 1: Rotating the axes

    x = OQ = OP cos )( αθ +
       = OP (cos θ  cos α  − sin θ  sin α )
       = (OP cos θ ) cos α  − (OP sin θ ) sin α
 = OR cos θ  − PR sin θ
 = x1 cos θ  − y1 sin θ

Similarly y = x1 sin θ  + y1 cos θ

These transformation equations could be combined into a single 
matrix equation:
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A matrix of the type P is called a rotation matrix. It will be shown 
soon that any 2×2 real orthogonal matrix with determinant equal 
to 1 is a rotation matrix.

IV. Results and Discussion
Thermography reveals the infrared heat emittion distributions 
differently temperature. A proper image processing is to be 
developed to enhance the readability of the thermograms to ease 
the technician’s diagnosis. Fig. 2 presents example of thermal 
image of healthy breast or normal thermogram. Fig. 3 presents 
example of thermal image of advanced breast cancer and Fig. 4 
presents example of thermal image of chemotheraphy condition 
where breast cancer has evidently higher temperature and the 
temperature distribution is very asymmetric. Fig. 5 shows the 
true color of advanced breast cancer thermogram converted into 
grayscale image. 

Fig. 2: Present example of thermal image of healthy breast

Fig. 3: Present example of thermal image of advanced breast 
cancer (white area spread on the breast)

Fig. 4: Present example of thermal image of chemotheraphy 
condition (red area on the breast)

 
Fig. 5: (left) true color image, (right) converted in to grayscale

For each thermal image, we can create mean value, entropy value, 
skewness value, kurtosis value, and variance value accounted 
from grayscale images as described above. Fig. 6 through Fig. 
9 show plots of raw data thermogram in two dimensions which 
is measured from two statistical features. This Fig.s show the 
randomized input of three kinds of thermograms. The normal 
thermograms are identified by red circle sign, chemotherapy 
thermograms are identified by green dot sign, and at last advanced 
thermograms are identified by a blue star sign.

110 120 130 140 150 160 170 180 190 200 210
5

5.5

6

6.5

7

7.5
plot mean value as  function of entropy of raw data

mean value

en
tr

op
y

 

 

normal
chemotheraphy
advanced

 
Fig. 6: Plot mean value as function of entropy of raw data 
thermograms 
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Fig. 7: Plot mean value as function of skewness of raw data 
thermograms
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Fig. 8: Plot mean value as function of kurtosis of raw data 
thermograms 
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Fig. 9: Plot variance value as function of entropy of raw data 
thermograms 

To make PCA works properly, the mean must be subtracted from 
each of the data dimensions. The mean subtracted is the average 
across each dimension. Hence, all of the values have x   (the 
mean of the x  values of all the data points) subtracted, all the y  
values  have y   subtracted from them, and the z  values  have 
z   subtracted from them. This produces a data set whose mean 
is zero. Plots of the raw data subtract the mean were showed in 
Fig. 10 through Fig. 13.
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Fig. 10: Plot mean value as function of entropy of raw data subtract 
the mean 
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Fig. 11: Plot mean value as function of skewness of raw data 
subtract the mean 
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Fig. 12: Plot mean value as function of kurtosis of raw data subtract 
the mean 
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Fig. 13: Plot variance value as function of entropy of raw data 
subtract the mean

Calculating the covariant matrix, the eigenvectors and eigenvalues 
from raw data subtract the mean. Plots data subtract the mean with 
rotation matrix P were showed in Fig. 14 through Fig. 17.
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Fig. 14: Plot mean value as function of entropy of raw data subtract 
the mean with rotation matrix P 
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Fig. 15: Plot mean value as function of skewness of raw data 
subtract the mean with rotation matrix P
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Fig. 16: Plot mean value as function of kurtosis of raw data subtract 
the mean with rotation matrix P
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Fig. 17: Plot variance value as function of entropy of raw data 
subtract the mean with rotation matrix P 
For the better result, the new coordinates with rotation matrix 
Pt in terms of the old ones in Fig. 18 through Fig. 21 could be 
also solved.
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Fig. 18: Plot mean value as function of entropy of raw data subtract 
the mean with rotation matrix Pt 
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Fig. 19: Plot mean value as function of skewness of raw data 
subtract the mean with rotation matrix Pt
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Fig. 20: Plot mean value as function of kurtosis of raw data subtract 
the mean with rotation matrix Pt
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Fig. 21: Plot variance value as function of entropy of raw data 
subtract the mean with rotation matrix Pt
It turns out that these axes works much better in recognizing faces, 
because the PCA analysis has provided the original images in 
terms of the differences and similarities between them. The PCA 
analysis has identified the statistical patterns in the data. Plots 
for the new coordinates in 3 dimensions rotation were showed in 
Fig. 22 through Fig. 25.
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Fig. 22: Plot mean value as function of entropy of raw data subtract 
the mean with rotation matrix Pt  in 3D rotation 
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Fig. 23: Plot mean value as function of skewness of raw data 
subtract the mean with rotation matrix Pt in 3D rotation
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Fig. 24: Plot mean value as function of kurtosis of raw data subtract 
the mean with rotation matrix Pt in 3D rotation
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Fig. 25: Plot variance value as function of entropy of raw data 
subtract the mean with rotation matrix Pt in 3D rotation 
Table 1 shows the measurement of mean value and entropy value 
of average normal, chemotherapy, and advanced thermograms. 

Table 1: the average value of thermograms
Type of 
thermo-
gram

mean variance skew-
ness kurtosis entropy

Normal 170,8 1720,6 -1,09 1,82 6,61
Chemo-
therapy 164,5 1815,9 -1,27 3,00 6,56

Advanced 137,6 2177,1 -0,57 0,45 6,82
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Table 2 shows the coefficient correlation of thermograms. There 
is no any change value of x,y (denoting normal, chemotherapy 
thermo-grams) in first and second transformation, yet change value 
to zero for advanced thermograms. The result in Table 2 shows 
an exist linear dependence of two variables x and y, x and z, or 
y and z. One of the variables (zt1) altered transformation as an 
independent variable related to the other x and y which provides 
zero value from it.
Table 2: Coefficient correlations of thermograms

Type of 
thermo-
gram

mean variance skew-
ness kurtosis entropy

Normal 170,8 1720,6 -1,09 1,82 6,61
Chemo-
therapy 164,5 1815,9 -1,27 3,00 6,56

Advanced 137,6 2177,1 -0,57 0,45 6,82

Note: x is variable of the normal thermograms, y is variable of 
the chemotherapy thermograms, and z is variable of the advanced 
thermograms. The transformation variables denote xt1, zt1, yt1, 
xt2, yt2, zt2 for first and second transformation respectively.

V. Conclusions
The experimental results show that first order statistical 
measurement namely mean value, variance value, skewness 
value, kurtosis value, and entropy value combined with principal 
component analysis method is promising to distinguish the types 
of thermal images. Further experiments should be coupled with 
spectral and structural methods for analysis. 
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