
Abstract
A low-power, CMOS retina with real-time, pixel-level processing 
capabilities is presented. Features extraction and edge enhance- 
ment are implemented with fully programmable 1D Gabor 
convolutions. An equivalent computation rate of 3 GOPs is 
obtained at the cost of very low-power consumption (1.5 µWper 
pixel), providing real-time performances (50 microseconds for 
overall com-putation, 0.5GOPs/mW). Experimental results from 
the first realized prototype show a very good matching between 
measures and expected outputs.
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I. Introduction
Real-time, low-power, low-cost, and portable vision systems 
apt to be adopted as an optical front end on mobile and 
autonomous systems are more and more demanded for by the 
consumer electronic market. Specific vision tasks, rang-ing from 
segmentation to recognition (characters, faces, postures, obstacles) 
and classification, are required in several different applications 
which are emerging from the needs of the automotive, mobile 
surveillance market. In the automotive field, for example, an 
increasing number of electronic devices are being introduced in 
the car to improve safety and drive-ability. Sensors will be needed 
for applications such as drive- support and safety measures. In the 
mobile market, more and more capabilities (such as OCR, face 
recognition and so on) will be built in the 3G cell phones, which 
are already being equipped with digital cameras. Surveillance 
systems repre-sent an exploding market with plenty of complex 
image pro-cessing applications, such as biometric identification 
in air-ports, to cite only one. Promising fields of application are 
also medical assistance and, of course, robotics. These applications 
(requiring estimation of motion-in-depth, computation of time-
to-contact, target tracking, object recognition, and other high-
level image processing tasks) are examples of perceptive tasks, 
or problems conveying the necessity of taking a quick decision on 
the basis of a sensory input (visual, in this case). The traditional 
approach to image processing, based on acquisition on a CCD 
camera and soft- ware processing on a digital platform (PC, DSP, 
or ASIC), has proven to be scarcely fit to accomplish perceptive 
tasks. In fact, even if a wide and reliable collection of software 
algorithms is available and computational capabilities of digital 
platforms are constantly evolving and improving, nevertheless, 
it seems that the constraints of real time, low cost, low power 
and portability can be hardly contemporaneously met with the 
classic approach. Need for low-power operations as well as real-
time requirements overwhelm performances of classic imager/PC 
systems thus requiring a different approach. Smart sensors are 
emerging as a possible solution to this impasse [1]. This novel 
approach, not limited to the field of machine vision, is based on 
the introduction of low-level processing into the sensor itself. 
This is feasible in the case of CMOS imagers where fill factor of 
the pixel can be sacrificed in order to add special computational 
ca- abilities based on analog processing circuits surrounding the 
photo-transducers. In this case, the sensor preprocesses the acquired 
image and provides further processing stages with a salient, band 

limited, and rich information ready to be exploited to achieve a 
final decision. The advantage of this kind of architecture consists 
in the possibility of performing a number of low-level algorithms, 
which usually require time and computational resources, in a very 
parallel fashion, at pixel level, exploiting collective computation 
of all the pixels. At the same time, unfortunately, there are several 
drawbacks: reduction of image resolution, increase of device 
dimensions, and critical design issues. Thus, it is clear that the 
develop- ment of a smart system is intimately related to the specific 
application it can encompass and the adoption of this pro- cessing 
paradigm requires a proper evaluation of the trade off between 
cost, design time, speed, power consumption, and versatility of 
the device.

II. Relatedworks Andmotivation
Starting with the seminal work of Mead [2], at Caltech, a large 
number of different vision sensors were proposed in the literature. 
Most of these sensors are somehow inspired by biology and try to 
morph the structure of vertebrate retina. A number of vision chips 
implement low-level spatial pro- cessing, such as normalization 
and contrast sensitivity [3], normalization and high-pass spatial 
filtering [4], detection of preferred orientations [5], and extraction 
of contrast direction and magnitude [6]. Others are more oriented to 
a time- domain processing such as the imager from Tobi Delbruck 
[7], which adopts a self-adaptive photo sensor altogether with a 
time-derivative processing, or the insect’s vision-based sen- sor 
from Moini [1] capable of detecting direction and velocity of 
motion of objects, or the temporal diference imager described 
in [8]or in [9]. More specialized vision sensors implement 
sophisticated and mixed spati-temporal processing, like the retina 
from Etienne-Cummings [10]which implements target tracking 
within a foveated approach or, again, the steerable spatiotemporal 
imager described in [11], or the low-power orientation selective 
chip from Shi [5]. These latter systems are more oriented to a 
generic bio inspiration and the electronic implementation is not 
so closely related to biological  counter parts but inspired by 
biological architectures or algorithmic solutions. In this paper, we 
present a novel, low-power CMOS im- age sensor which entails, 
at pixel level, real-time filtering capabilities. Low-level image 
processing is implemented by means of massively parallel analog 
computing cells inte- grated into the photodiodes. With respect to 
other vision chips, we focused our attention onmeeting, at the same 
time, low-power, medium-resolution, and real-time constraints. 
Moreover, with respect to other sophisticated and specialized 
chips, we chose to implement a kind of image processing (Gabor 
filter) which is very versatile and useful for a large set of diferent 
high-level algorithms. A prototype version of the chip was realized 
and successfully tested. Section III presents the sensor capabilities 
and the implemented algorithm. The chip architecture is described 
in Section IV while Section V covers the circuit design of each 
block. Section VI discusses test setup and results and Section VII 
draws the conclusions.

III. Smart Sensor
The choice of the proper algorithm is crucial for the successful 
design of a smart vision system. In this paper, we present a device 
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capable of convolving the acquired Gabor-like function kernel, 
whose mathematical 1D expression is the following:

 
Fig. 1 : Connection scheme for node n

It has been shown that Gabor convolution is an ideal low- level 
processing task that can be useful for a large number of diferent 
applications. They range from stereo depth estimation[12,13]
to motion detection[14, 15, 16, 17], texture analysis [18,19], 
segmentation [20, 21, 22], and estimation of motion-in-depth 
[23]. Key feature for all these algorithms is the possibility of 
interactively changing the parameters of the kernel (frequency 
of the cosine, decaying factor of the ex- potential gain). Very 
fast output rate is required to be able to perform multiscale and 
multifrequency filtering of the same image. As stated in [24], the 
convolution between the input image and a Gabor-like kernel 
can be obtained introducing linear interactions between the 
pixels, as shown in Fig. 1.The connection scheme is described, 
in mathematical form, by where x(n) is local luminance input at 
pixel n, y(n) is the

filter output and the value of coecients a0, a1, and a2 completely 
determines the shape of the kernel (C, λ, and ω in (1)), while 
the phase φ can be set linearly combining the out-puts [25]. We 
call this basic analogue convolver perceptual engine. It is worthy 
to note that, to obtain stable and oscillating kernels, coecients 
a2 and a1 must have opposite signs. The circuit implementation 
of the perceptual engine is provided in detail in Section V. The 
main drawback of Gabor filters is their sensitivity to background 
illumination due to their nonzero mean value, therefore, circuitry 
for removal of the mean output value is needed. This circuitry is 
described in Section V.

IV. Chip Architecture

Fig. 2: System overview of the realized chip : main blocks

The realized chip is subdivided into 4 main blocks which are shown 
in Fig. 2. Each block will be described, briefly, in this section while 
a detailed description of the pixel is given in Section V.

A. Pixel array
The core block is, of course, the array of pixels, made up of a 
1D array of 64 pixels tightly interconnected one with the other. 

This block has two outputs: an output current (Iout), which is 
the result of the convolution of the input image with the kernel, 
and an average current (Ismooth), which is the smoothed (low-
pass filtered) version of the output current. The smoothing is 
programmable and the average can be local or global. The two 
output currents can be subtracted one from the other simply 
connecting together the two out- put pins (the currents have 
opposite sign). Both currents are available off chip in order to 
be able to turn on and off the edge enhancing high pass filter. 
In this way, it is possible to enhance information coming from 
edges and get rid of then Gabor kernel mean output value, which 
is the main draw- back of Gabor filters, as explained in Section 3. 
The single pixel is divided into three main blocks which perform 
different tasks. The overall structure is depicted in Fig. 3. The first 
block is devoted to signal acquisition and conditioning. Light is 
converted into a current and this cur-rent is globally normalized 
in order to be sure that operating conditions of further stages are 
within safety ranges.
The second block implements the convolution (percep-tual 
engine), so it is the counterpart of the single cell depicted in 
Fig. 1. Basically, this block generates weighted replicas of output 
current necessary to implement (2) and provides them to the first 
and second neighbors on the left and on the right (S(n−1), S(n−2), 
S(n+1),and S(n+2), respectively). Weights are electrically set to 
choose the proper kernel. Bi-ases are needed to set the parameters 
of the filter and con- tributions from the neighboring pixels are 
summed at node S(n) to correctly implement (2). The output of 
this stage is a current (PE current) representing the convolution 
of the in- put image with the perceptual engine. The third block 
is made up of a selection block with a smoothing filter that can 
be tuned or even disabled. The output current coming fromthe 
previous block is replicated and connected by means of a switch 
to a global output node di-rectly attached to a pin. The switch 
is turned ON by the signal sel(n) coming from the scanner. The 
replica of the output current is smoothed with a lowpass filter 
and connected to another global output node by means of another 
switch driven by the inverted signal n sel(n). The output currents 
coming directly from the perceptual engine and smoothing filter 
are available at the same time off-chip but the two output pins 
can be shorted to obtain their difference (edge-enhanced version 
of the image).

B. Scanner circuitry, bias block, and communication 
block
The scanner is needed to access in a raster way each pixel of the 
array. It is realized as a standard ring counter made-up of foundry 
standard cells. An analog bias block is needed to generate all the 
bias signals exploited by the circuitry in the pixel (such as vr, v1, 
v2, and so on). To simplify testing and control of the device, these 
biases are generated internally by means of 11 digital- to-analog 
converters with current output. The 11 DACs con- tain digital 
registers accessible fromo offchip via an SPI protocol. So, each 
bias can be set digitally writing the correct value,in the proper 
register. In this way, we are able to program fre-quency, envelope, 
and gain of the Gabor kernel as well as total output current 
(INORM), amount of the smoothing performed on the image and 
some other control parameters. Finally, a communication block is 
needed to interface the device with a PC to download the proper 
settings and interactively change the parameters of the kernel. 
The commu-nication block implements a standard SPI interface 
through which the content of each register is set.
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V. Circuit Implementation

A. Acquisition and conditioning
The acquisition and conditioning block is shown in Fig. 4a. The 
light-to-current transducer is a photodiode obtained with N-well 
to P-substrate junction. Despite of its slightly bulkier area, this 
photodiode was preferred with respect to other solutions, such as 
N-diffusion over P- substrate, in order to collect a larger number 
of photons in the visible spectrum thanks to its deeper junction 
position. A better absorption coecient is needed since the process- 
ing circuitry reduces the area of the photodiode, reducing its 
sensitivity. Global normalization is achieved by means of a circuit 
described elsewhere (see [26, 27]) based on a translinear loop 
(transistors MNI and MNO). Basically, global nodes VNORM 
and INORM are common to all the pixels. In this way, the sum of 
all output currents IPHN(n)issetto INORM. The translinear loop 
forces currents of MNI and MNO to be proportional, so IPHN(n) = 
kIPH(n). Thus, if total input current is ITOTAL, the output current 
of this block is Normalization is needed since the

successive block (the per- ceptual engine) is based on transistors 
working in weak in version. If the current coming from the 
photodiodes be-comes too large, the input transistors of the 
second stage could leave the weak inversion region and the correct 
implementation of the weights (so the convolution) would be

Fig. 3 : System overview of the realised chip : pixel stucture

Fig. 4 : Cicruit details of the pixel : (a) acquisition and conditioning  
; (b) output stage and smoothing filter

affected. On the other side, the current should not become too 
low in order to grant a good signal-to-noise ratio. Dark current 
noise is always present in a photodiode and the signal current 
should always suffciently higher in order to be distinguished from 
noise.

B. Basic circuit: perceptual engine
The basic pixel circuit is shown in Fig. 5. Inordertocarry out (2) 
at pixel level, a current-mode approach was chosen: in each pixel, 
weighted copies of local output current (to implement weights) 

are generated and distributed to

Fig. 5 : Circuit diagram for the single pixel. Node S(n) is the node 
where all contributuions are summed and (2) is carried out.

neighbors; at the same time, weighted contributions from 
neighbors and local input are collected and summed exploiting 
Kircho current law (KCL). Core processing unit is made up of 
transistors MR, M1, M2,and M3. These MOS transistors generate 
the weighted copies; they are biased and sized in order to work in 
their weak inversion region (but in saturation) and can be described 
as pseudo conductances [28]. The sum is implemented at node 
S(n) where all currents converge. Since the core block is basically 
a programmable current divider, its functionality can be described 
writing all currents, except input current, in terms of the output 
current IPE(n), which flows in MR.Infact,

where G R,1,2,3 = (Is/V0)e(VR,1,2,3−VT0)/(nUT ) is the 
programmable pseudo conductance ofMR,1,2,3, depending only 
on process parameters and gate voltage. Current generator labeled 
IPHN(n) represents the output of the acquisition and conditioning 
block, currents coming from neighboring pixels are injected at 
node S(n)where the KCL equation becomes

The constant bias current Ib, added to the photodiode current in the 
previous block, shifts the zero level of the output current preventing 
the filter from being saturated by negative current peaks. Since 
the value of GR,1,2,3 is determined by gate voltages, the pseudo 
conductances and, consequently, the  parameters and shape of the 
filter can be easily set adjusting four reference currents (I(R,1,2,3)
REF) flowing in diode-connected transistors in a global bias block 
of Fig. 2. Contributions from the nth pixel to the first and second 
neighbors are provided through current mirrors M1 and M2. The 
proper sign for a1 and a2 coecients is obtained  by a sequence of 
odd or even mirroring of the current. Signal sign and transistors M3 
are adopted to increase the range of programmability of coecients, 
selecting the minus or plus sign in (6). Since the whole processing 
is kept local and does not depend on any process parameter (which 
are canceled in the ratios of matched components), the circuit is 
robust with respect to parameters’ fluctuations and mismatch. In 
fact, all matched transistors are within the same pixel and can be 
laid out in a very compact area. 5.3. Output stage and smoothing 
filter The third block composing the pixel is shown in Fig. 4b. The 
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gate voltage PE current, coming from the output current mirror of 
the perceptual engine is applied to the input transistor MP1 (output 
stage of a current mirror) and generates a replica of the output 
current. This current is injected in a first-order diffusive network 
made up of transistors MLAT and MVER. The idea is the same 
described in [26], a slight amount of the current is lost through 
the lateral connections while the remaining flows in MVER. In 
fact, transistor MLAT is connected to the first neighbor on the 
right through pin AV(n + 1), while pin AV(n − 1) connects the 
pixel to its first neighbor on the left. The output smoothed current 
has an opposite sign with respect to the real output current, so 
it can be easily subtracted (to perform edge enhancement) just 
connecting nodes I out and I smooth. The smoothing is performed 
after the convolution with the perceptual engine since this latter is 
a linear filter and preserves any linear operation. For this reason, 
applying the Gabor convolution and then performing the edge 
enhancement

Fig. 6 : Latyout and dimensions of the realized chip: (a) 
microphotograph, the layout is rotated 90 degrees.

is equivalent to performing the enhancement and then the Gabor 
convolution? Only, in the first case, we can use just one Gabor 
filt while in the latter we would have needed two different Gabo 
filters (one for the image and one for its smoothed version)

VI. Experimental Results And Discussion

A. Integration 
A prototype device with an array of 1×64 pixels was realized in an 
analog 0.5 µCMOS process from Alcatel Mietec with double-poly 
three metals, and a hipo resistor. Dimensions of the single pixel are 
33 µm × 245µm for an area of about 8000 µm2 and a fill factor of 
about 11%: these dimensions are compatible with the integration 
of low cost, medium size smart devices (over 10 000 pixels). Fig. 
6a shows a microphotograph of the chip, while Fig. 6b shows the 
layout of a single pixel. With respect to other implementations 
such as [5], our device is based on a very compact circuit able to 
implement the Gabor convolution with 18 transistors only. With 
13 transistors more, also normalization and high pass filtering (not 
available in the previously cited work) were implemented.

B. Real time
Computing time of the filter depends only on the time response 
of the single pixel since filtering is performed in parallel by 
all pixels at the same time. Time response is dominated by the 
integrating node S(n) where all currents are summed. This node 
is a low-impedance node (looking into the source terminals of 
MR, M1, M2,and M3)with a low capacitance due only to parasitic 
capacitances of sources and drains. Fig. 7 shows simulations result 
for a transient analysis of the circuit. Output currents (here we 
plot I out and not its high pass filtered version just to show the 
range of variation of real currents flowing in the circuit) of all 64 
pixels are shown for a step input current of 5 nA (going from 10 nA 
to15 nA). Computation time can be estimated in 50 microseconds 
with output currents in the order of 50 nA. Increasing current 
level, of course, decreases propagation delay but increases power 

consumption.

C. Power consumption
In the proposed simulation, power consumption can be estimated 
summing up the currents flowing in all the branches of the 
perceptual engine from VDD to ground. This static component 
of power is the dominant one, in this circuit,

Fig. 7 : Transient response of the perceptual engine : output current 
(Iout) versus time for an output current step going from 0 to 5 nA 
at time t-10 micro seconds.

since dynamic power is wasted mainly to change voltage a node 
S(n). In fact, voltage at S(n) determines all the output currents 
since the gate voltages of M1, M2, M3,and MR are constant. These 
transistors are biased in weak inversion so their trans conductance 
is very large and only very small changes in voltages are needed to 
obtain large changes in currents. For this reason, dynamic power 
is very small, compared to static one. There are 9 branches for a 
total current of around 450 nA in the central pixel. This current 
means a power consumption of 1.5 µW for the central pixel. A 
rough comparison with a digital approach can be on calculating 
the equivalent computation rate of the circuit. A possible digital 
implementation of the Gabor filter requires an FIR spatial filter 
with at least 20 taps. Implementing this filter with a DSP would 
require 20 multiplications (one fo each tap) and 19 sums. If 
each operation requires only an instruction, the total number of 
instructions needed to perform convolution of an image of 64 
× 64 pixels would be (20 + 19) × 642. Performing the overall 
filtering in 50 microseconds, as done by the proposed circuit, 
would require a computation rate of around 3 GOPs, hardly met 
by a single low-power DSP. We estimated power consumption 
required for this computation rate from selection tables of power 
efficient DSPs TMS320C5000 family of Texas Instruments [29]. 
With an estimated dissipation of 25mW/MIPS for a TMS320C55, 
a rate of 3 GOPs would require around 80W.

Fig. 8 : Several kernels implmented by the realized device : 
experimental data (*) versus expected results (solid). Starting 
from the top left and clockwise : (a) kernel I (λ1= 0.496 ω1= 0.9, 
C1=1), (b) kernel 2 (λ2= 0.449, ω2=1.1, C2=0.6), (c) kernel 3 (λ3= 
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0.496, ω3 = 1.3, C3 = 0.8), and (d) kernel 4 (λ4 = 0.449, ω4= 1.5, 
C4 = 0.8).

D. Accuracy
Precision of the circuitry is mainly affected by mismatches in the 
core transistors of the perceptual engine (MR, M1, M2, and M3). 
In fact, those transistors are biased in weak in version and are 
sensitive to fluctuations of threshold voltage. For this reason, to set 
the W/L of the core transistors, we adopted a design strategy based 
on minimization of expected SNR of the final result, described 
in [30] which maximized accuracy of the device. In Fig. 8, the 
experimental results with 4 different kernels corresponding to 
different combinations of frequency, envelope, and gain are 
shown. It is worthy to note the very good matching between 
expected results (calculated Gabor like functions obtained from 
the model) and experimental data. Programmability and precision 
of the device are proven by the fact that measurements fit very well 
expected wave forms. Accuracy was measured by calculating the 
SNR for each test (see Fig. 9). Signal-to-noise ratio was computed 
subtracting experimental results and expected results to obtain 
noise. Power of both signal and noise was calculated and the 
corresponding SNR computed. Results are SNR1 =26 dB, SNR2 
= 25 dB, SNR3 = 35 dB, and SNR4 = 32 dB (kernels 1, 2, 3, 
and 4 are those of Fig. 8,fromtopleft and clockwise). It is worth 
to note that expected results are calculated with the Gabor-like 
formula and not from circuit simulations. These data were obtained 
exciting the network with a current impulse in the central pixel and 
converting output current into a voltage off-chip. A fixed pattern 
noise of the order of 15% of bias current Ib, mainly due to the way 
this bias current is generated on-chip, affects the performances of 
the chip but it can be systematically corrected simply subtracting 
the noise image from signal image. This FPN is due to a problem 
in the layout of the bias transistors and will be amended in future 
implementations.

VII. Conclusions
A low-power, real-time silicon retina able to acquire a 1× 6 image 
and convolve it with a fully programmable Gabor 

Fig. 9 : Power density spectrum of both expected data (1) and 
experimental results (*) for kernel 1.

The chip is versatile, programmable, and useful for a range of 
embedded applications requiring small area, low power, and very 
fast image processing. The overall convolution is led on in less 
than 50 microseconds for a step change in input current. This delay 
does not depend upon the resolution of the device since it is mainly 
due to the time response of the circuit of the single pixel. Power 
consumption is slightly dependent on the implemented kernel 
since changes in parameters ai imply a large range of variation for 
the pseudo conductance’s G R, 1, 2, and 3. However, for the single 
pixel, it can always be kept under 1.5 µW. Table 1 summarizes the 
chip characteristics. An equivalent computation rate of 3 GOPs is 
obtained by means of a full parallelism implemented at pixel level. 
The bi dimensional version of the chip can be easily obtained by 
replicating the 1D array.
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