
Abstract
Refactoring is the process of modifying a program’s source code
without changing its behavior, with the motive of improving
program’s readability. Code refactoring is a disciplined way to
restructure code", undertaken in order to improve some of the
nonfunctional attributes of the software. Typically, this is done by
applying series of "refactorings", each of which is a (usually) tiny
change in a computer program's source code that does not modify
its functional requirements. This paper tells various advantages
of refatoring. Also it proposes new advantage of code refactoring.
By doing them in small steps you reduce the risk of introducing
errors. You also avoid having the system broken while you are
carrying out the restructuring - which allows you to gradually
refactor a system over an extended period of time. This paper
describes various techniques used in refactoring. The paper also
proposes new techniques for refactoring.

Keywords
Refactor code, techniques of refactoring, advantages of refactoring,
Refactoring.

I. Introduction
Code refactoring is a disciplined way to restructure code",
undertaken in order to improve some of the nonfunctional
attributes of the software. Typically, this is done by applying series
of "refactorings", each of which is a (usually) tiny change in a
computer program's source code that does not modify its functional
requirements. By continuously improving the design of code, we
make it easier and easier to work with. This is in sharp contrast
to what typically happens: little refactoring and a great deal of
attention paid to expediently adding new features. If you get into
the hygienic habit of refactoring continuously, you'll find that it
is easier to extend and maintain code.

By continuously improving the design of code, we make it easier
and easier to work with. This is in sharp contrast to what typically
happens: little refactoring and a great deal of attention paid to
expediently adding new features. If you get into the hygienic
habit of refactoring continuously, you'll find that it is easier to
extend and maintain code.

Refactoring does not take place in a vacuum, but typically the
refactoring process takes place in a context of adding features
to software.

Refactoring and adding new functionality are two different but
complementary tasks- Scott Ambler.

"Refactoring is the process of changing a software system in such
a way that it does not alter the external behavior of the code yet
improves its internal structure."

The developer should be confident that code refactoring is not
damaging any existing functionality.

II. Advantages of Refactoring
Advantages of code refactoring include:
1. Improved code readability

2. Less complexity
3. Maintainability of the source code
4. More expressive internal architecture
5. Easy to extend the code.
6.More chance of reusability of code. We propose here this new
advantage of code refactor. As we divide code into modules during
refactoring these modules can be reused easily.

III. Techniques Used In Refactoring
Here are some techniques of code refactorings; some of these may
only apply to certain languages or language types:

1. Encapsulate Field
It forces code to access the field with getter and setter methods.
In computer programming, field encapsulation, also called data
hiding, involves providing methods that can be used to read/write
to/from the field rather than accessing the field directly. Sometimes
these accessor methods are called getX and setX (where X is the
field's name), which are also known as mutator methods. Usually
the accessor methods have public visibility while the field being
encapsulated is given private visibility - this allows a programmer
to restrict what actions another user of the code can perform.
Compare the following Java class in which the name field has
not been encapsulated:
public class NormalClass
{
 	 public String name;
 	 public static void main(String[] args)
 	 {
 		 N o r m a l C l a s s e x a m p l e 1 = n e w
NormalClass();
 		 example1.name = "myName";
 		 System.out.println("My name is " + example1.
name);
 	 }
 }
with the same example using encapsulation:
public class EncapsulatedClass
{
private String name;
 public String getName()
 {
{
return name;
 }
 public void setName(String newName)
 {
 name = newName;
 }
 public static void main(String[] args)
 {
 EncapsulatedClass example1 = new EncapsulatedClass();
 example1.setName("myName");
 System.out.println("My name is " + example1.getName());
 }
}

Refactor Code : A Review
Seema Kansal

Faculty in Computer Science and Technolgy,Singhania University, Rajasthan

  International Journal of Computer Science and Technology  113

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 2, June 2011

2. Generalize Type

It creates more general types to allow for more code sharing.

Type generalization is a technique commonly used in refactoring.
The idea is to draw on the benefits of object-orientation and
make more-generalized types, thus enabling more code sharing,
leading to better maintainability as there is less code to write. Too-
general code can, however, become completely useless, leading
to spaghetti code doing effectively nothing.

Type generalization refers to making more general or more abstract
some subset of the traits of a specific type. A superclass has wider
use than a specific subclass, and so is more 'general'.
An example of generalizing a type would be moving a method
from a child to a parent class for common use by all the parent
class' children, not just the original child.

Another example, in the Java programming language, would be
access to an object via an interface which isn't tied in to a specific
implementation of that interface.

3. Extract Method
It turns part of a larger method into a new method. By breaking
down code in smaller pieces, it is more easily understandable.
This is also applicable to functions. Extract moves part of the
code from an existing class into a new class.
You have one class doing work that should be done by two.	

4. Rename method or Rename Field
Changing the name into a new one that better reveals its purpose.
One of the simplest refactoring methods is called Rename method.
There are many reasons why one may want to change the name
of some method. I think that main reason to rename a method is
to give it a name that describes better what method is supposed
to do.

Let’s see some code.
public class ProfileImporter
{
 private List<Profile> _profiles;

 public void Import()
 {
 foreach (var profile in _profiles)
 ImportOne(profile);
 }
 public void ImportOne(Profile profile)
 {
 // import profile data
 }
}
We can easily understand what this class does. It imports user
profiles. Import method iterates through the list of previously
loaded user profiles and imports them one by one. ImportOne
method imports given profile and returns. Everything seems to
be perfect but there is something annoying.

When we are looking at this class we may not notice that ImportOne
is not informative name. But when we are using object based on
that class then ImportOne doesn’t seem nice name. What it means
“import one”? One what? How one is imported? It doesn’t make
me feel comfortable when I have to call this method because I’m

not sure what it exactly does.

Now I want to give better name to this method so I can be sure what
it does and also other team members or customers can understand
what this method exactly does. New name of the method will be
ImportProfile. It is clear to everybody what this method does – it
imports one profile. And as we can see from argument list we
have to provide the profile we want to import.

5. Adding new functions
To make code more readable it should be divided into small
modules. We can do it by converting a general code of section
into a function.

6. Replacing the macro definition codes with proper
aspect program and advice
The macros cause a lot of problems in refactoring as the refactoring
tools cannot be applied to them as we had discussed in the earlier
sections. Thus we are looking for appropriate replacements of the
macros that would also preserve the behavior. The replacements
can be done using appropriate aspects and executing the advice
on the appropriate join points. But to what extent would this
refactoring help, has to be validated.

IV. Conclusion
This paper takes a review of various refactoring techniques like
Encapsulate Field, Generalized Type, Extract Method, Rename
Method, Adding New Functions, Replacing Macro Definition.
It also tells how we can do a technique implementation and
tells advantages of refactoring. It also proposes new technique
for refactoring Replacing Macro Definition Codes with Proper
Program and Advice. Replacements can be done using appropriate
aspects.

References
[1]	 [Online] Available : http://www.cs.usfca.edu/~parrt/

course/601/lectures/refactoring/refactoring.html
[2]	 [Online] Available : http://weblogs.asp.net/gunnarpeipman/

archive/2009/02/07/refactoring-rename-method.aspx
[3]	 Refactoring HTML: Improving the Design of Existing Web

Applications By Elliotte Rusty Harold
[4]	 xUnit Test Patterns: Refactoring Test Code By Gerard

Meszaros
[5]	 Fowler, M. Refactoring. Improving the Design of Existing

Code. Addison-Wesley,1999.

Seema Kansal has done MCA from
Punjabi University, Patiala. She is
doing her Ph. D. degree in ‘Refactoring
Framework Development’ from
Singhania University, Rajasthan,
India. She is currently teaching as
assistant, lecturer, associate professor
in Department of Computer Science at
a reputed engineering college.

114  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

