
Abstract
In the recent years open source software has seen spectacular
success due to the development of high quality software. Open
source software development has established itself to be an
efficient and successful development methodology despite the
fact that no standard development life cycle exists and also the
development methodology of OSS violates many traditional
software engineering principles. In order to better understand
the software development different development models for open
source software are suggested by various researchers during the
past years. This paper study and analyzed some of the open source
software development life cycle models. The purpose of the study
is to summarize the current knowledge about OSS development
process and find out the software engineering practices of the
open source development environment. A comparison between
software engineering techniques of open source development
methodology and classical software development methodology
and weakness will also be discussed.

Keywords
Open Source Software Development, Software development models,
Software Development Life Cycle, Agile software development,
extreme programming, OSS Software Engineering.

I. Introduction
Open source software during the recent years has attracted
software users who want high quality software and cannot
afford expensive commercial version. Software like GNU Linux,
MYSQL, Apache web server, Mozilla web browser, Open office,
Perl programming language etc. getting the phenomenal success
among the software users. Generically open source refers to a
program in which the source code is available to the general
public for use and/or modifications from its original design free
of charge. Open source software as defined by the open source
initiative, is “software that must be distributed under a license
that guarantees the right to read, redistribute, modify and use
the software freely” [1]. Open source software is developed by
geographically distributed teams of volunteers with no central
control and that could define what or how the developers implement.
[2]. Open source software development method is aggressive and
progressive software development method and starts with problem
discovery/ idea from one pupil (mostly software developer) and
completed with the help of many software volunteers [3]. The
open source software development strategies are distinct from
that of traditional software development and differs significantly
from software engineering as it is described in text books. Open
source has violated many of the theories of software engineering
like limited team size, decentralized project management etc.
[4]. Traditional closed management with their classic way of
functioning may still look at the open source model as a big
mystery. The open source software development has changed
the way the software is perceived, developed and deployed [5].
The sudden success and major adoption of this new and innovative
software development strategy has led to rethink and re-evaluate
the studies and concepts of software engineering specially those

which the open source violates. This paper discusses different
development models of OSS and summarizes the current
knowledge about OSS development process. A theoretical study
is also being done to find out the software engineering practices
specially requirement analysis/project planning, system design of
the open source development environment. A comparison between
software engineering techniques of open source development
methodology and classical software development methodology
and weakness will also be discussed.

II. Traditional Software Development Methodology Vs
OSS Development Methodology
Traditional software development starts with detailed requirements
document that is used by the system architect to specify the system.
Next comes detailed system design, implementation, validation,
verification, and ultimately maintenance/upgrade. Iteration
is possible at any of these steps. On the other hand it is hard
to run an open source project following a traditional software
development method because in the traditional methods it is not
allowed to go back to a previous phase. In open source software
development requirements are rarely gathered before the start of
the project; instead they are based on early releases of the software
product. New projects also begins with a personal need of a single
developer who has a vision and tries to devise solutions for his
unmet need calls this “scratching an itch” [6]. Then he or she
starts and discussion with his friends and colleagues about the
possible solution and making the code

Fig. 1: Stages in Open Source Software Development Process

base. He makes this code available to others which attract the
attention of other user-developers and inspire them to contribute
to the project in this way the initial project community is formed
and the development proceeds. Typically, anyone may contribute
towards the development of the system and built Open Source
Community to provide administration for the project. This
initial community of interested persons starts to exchange their
knowledge on the topic and start working on the issue until they
achieve some satisfactory result. They make their work publicly
available at a place where many people are able to access it.
They may announce their project at places like mailing lists,
newsgroups or online news services. Other persons recognize
some of their own concerns in the project and are interested in
a convenient solution, too. Therefore, they review the projects
result (e.g. by using it). As they look at the issue from a different

Mature (There is little development occurring
with extreme caution and A project may remain in
this final stage for many years)

Software Engineering Issues in Development Models of
Open Source Software

Vinay Tiwari
University Institute of Computer Science and Applications, R.D. Univ., Jabalpur, MP, India

38  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

perspective, they suggest improvements and even might join the
project. These users now known as co-developer, helps in rapid
code improvement and effective debugging. As the project grows
more and more people get attached and a lot of feedback helps to
get a better understanding of the issue, and possible strategies to
solve it. New information and resources are integrated into the
research process. The solution grows, and addresses the issue in
ever better ways. The project’s community is established and will
react to future changes the same way it emerged originally.
Gregor J. Rothfuss [7] classified the various stages of an OSP
as Planning, Pre-Alpha, Alpha, Beta, Stable, Mature.

The Cathedral and the Bazaar [Eric S. Raymond, 1997] is the
most frequently cited description of the open-source development
methodology. In this book, Raymond makes the distinction between
two kinds of software development. The first is the conventional
closed source development. These kind of development methods
are, according to Raymond, like the building of a cathedral; central
planning, tight organization and one process from start to finish.
The second is the progressive open source development, which
is more like a “a great babbling bazaar of differing agendas and
approaches out of which a coherent and stable system could
seemingly emerge only by a succession of miracles.”

III. Life Cycle Models of Traditional Software
Development
A software development process or life cycle is a structure
imposed on the development of a software product. In this
section an overview of some life cycles models for traditional
software development is briefly discussed which will be later
useful in the present study. The first published model of the
software development process was Waterfall model. It begins at
the system level and progress through analysis, design, coding,
testing and support. Still it is well suited to projects which have
a well defined architecture and established user interface and
performance requirements.
When the requirements and user's needs are unclear or poorly
specified a Prototyping model is used. It was advocated by
Brooks. The approach is to construct a quick and dirty partial
implementation of the system during or before the requirements
phase. This quick design or prototype is evaluated by customer/user
and used to refine requirement for the software to be developed.
A better model, the "spiral model" was suggested by Boehm in
1985. The spiral model is a variant of "dialectical spiral" and as
such provides useful insights into the life cycle of the system. This
model can be considered as a generalization of the prototyping
model. That is why it is usually implemented as a variant of
prototyping model with the first iteration being a prototype [8].
Agile represent new approaches in the spectrum of software
development methods. The aim of these practitioner-oriented
software development methods is to make a software development
unit more responsive to changes. These changes are imposed by
rapidly evolving technology, changing business and product needs.
Agile software development uses iterative development as a basis
but advocates a lighter and more people-centric viewpoint than
traditional approaches. Agile processes use feedback, rather than
planning, as their primary control mechanism. The feedback is
driven by regular tests and releases of the evolving software.

The variation of agile process is Extreme programming (XP)
in which the phases are carried out in extremely small (or
“continuous”) steps compared to the older, batch process. It is
the latest incarnation of Waterfall model and is the most recent

software fad. XP try improve classic waterfall model by trying to
start coding as early as possible but without creating a full-fledged
prototype as the first stage.

IV. OSS Development Models
There are many theoretical approaches that try to explain the
phenomenon of open source. But still no generally agreed well
defined standard development model for open source software
exists. Open source processes can vary from project to project.
There is no single universal approach to Open Source software
development. Projects differ a lot from each other, and there are
differences even in the workings and organizational approach of a
single project over time. Classifications of different development
styles have been made, but there is no general consensus on
taxonomy of projects [1]. Open Source Software Development
is an orthogonal approach to the development of software systems
where much of the development activity is openly visible,
development artifacts are publicly available over the Web, and
generally there is no formal project management regime, budget
or schedule [9]. Open Source Software Development is oriented
towards the joint development of community of developers and
users concomitant with the software system of
interest as compared with traditional software development and
maintenance [10]. Sharma et al [11] suggested that typically in an
OSS project, developers iterate through a common series of actions
while working on the software source. The development process
of an OSS project consists of the following visible phases:

Fig. 2: OSS Development Process (source wikipedia)

1.	 Problem discovery
2.	 Finding volunteers
3.	 Solution identification
4.	 Code development and testing
5.	 Code change review
6.	 Code commit and documentation
7.	 Release management

Abstract
In the recent years open source software has seen spectacular
success due to the development of high quality software. Open
source software development has established itself to be an
efficient and successful development methodology despite the
fact that no standard development life cycle exists and also the
development methodology of OSS violates many traditional
software engineering principles. In order to better understand
the software development different development models for open
source software are suggested by various researchers during the
past years. This paper study and analyzed some of the open source
software development life cycle models. The purpose of the study
is to summarize the current knowledge about OSS development
process and find out the software engineering practices of the
open source development environment. A comparison between
software engineering techniques of open source development
methodology and classical software development methodology
and weakness will also be discussed.

Keywords
Open Source Software Development, Software development models,
Software Development Life Cycle, Agile software development,
extreme programming, OSS Software Engineering.

I. Introduction
Open source software during the recent years has attracted
software users who want high quality software and cannot
afford expensive commercial version. Software like GNU Linux,
MYSQL, Apache web server, Mozilla web browser, Open office,
Perl programming language etc. getting the phenomenal success
among the software users. Generically open source refers to a
program in which the source code is available to the general
public for use and/or modifications from its original design free
of charge. Open source software as defined by the open source
initiative, is “software that must be distributed under a license
that guarantees the right to read, redistribute, modify and use
the software freely” [1]. Open source software is developed by
geographically distributed teams of volunteers with no central
control and that could define what or how the developers implement.
[2]. Open source software development method is aggressive and
progressive software development method and starts with problem
discovery/ idea from one pupil (mostly software developer) and
completed with the help of many software volunteers [3]. The
open source software development strategies are distinct from
that of traditional software development and differs significantly
from software engineering as it is described in text books. Open
source has violated many of the theories of software engineering
like limited team size, decentralized project management etc.
[4]. Traditional closed management with their classic way of
functioning may still look at the open source model as a big
mystery. The open source software development has changed
the way the software is perceived, developed and deployed [5].
The sudden success and major adoption of this new and innovative
software development strategy has led to rethink and re-evaluate
the studies and concepts of software engineering specially those

which the open source violates. This paper discusses different
development models of OSS and summarizes the current
knowledge about OSS development process. A theoretical study
is also being done to find out the software engineering practices
specially requirement analysis/project planning, system design of
the open source development environment. A comparison between
software engineering techniques of open source development
methodology and classical software development methodology
and weakness will also be discussed.

II. Traditional Software Development Methodology Vs
OSS Development Methodology
Traditional software development starts with detailed requirements
document that is used by the system architect to specify the system.
Next comes detailed system design, implementation, validation,
verification, and ultimately maintenance/upgrade. Iteration
is possible at any of these steps. On the other hand it is hard
to run an open source project following a traditional software
development method because in the traditional methods it is not
allowed to go back to a previous phase. In open source software
development requirements are rarely gathered before the start of
the project; instead they are based on early releases of the software
product. New projects also begins with a personal need of a single
developer who has a vision and tries to devise solutions for his
unmet need calls this “scratching an itch” [6]. Then he or she
starts and discussion with his friends and colleagues about the
possible solution and making the code

Fig. 1: Stages in Open Source Software Development Process

base. He makes this code available to others which attract the
attention of other user-developers and inspire them to contribute
to the project in this way the initial project community is formed
and the development proceeds. Typically, anyone may contribute
towards the development of the system and built Open Source
Community to provide administration for the project. This
initial community of interested persons starts to exchange their
knowledge on the topic and start working on the issue until they
achieve some satisfactory result. They make their work publicly
available at a place where many people are able to access it.
They may announce their project at places like mailing lists,
newsgroups or online news services. Other persons recognize
some of their own concerns in the project and are interested in
a convenient solution, too. Therefore, they review the projects
result (e.g. by using it). As they look at the issue from a different

Mature (There is little development occurring
with extreme caution and A project may remain in
this final stage for many years)

  International Journal of Computer Science and Technology  39

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 2, June 2011

Life cycle starts with the problem discovery by discussing with
active developers. An agenda file with a list of high priority
problems, open issues and release plans is stored in each product’s
repository to keep track of project status. Once the problem
is discovered, volunteers are found to work on the problem.
Volunteers prefer to work on problems that are related to the areas
they are familiar with and have been working on. After having
found volunteers to work on a problem, the next step is to identify
the solution. Usually, many alternative solutions are available.
Developers choose solutions for their generality and portability.
The chosen alternative is posted to the developer mailing list for
feedback before it is implemented. Once the solution has been
identified, code is developed. The developer makes changes to a
local copy of the source code, and tests the changes in his or her
own environment. The tested solution is posted to the developer
mailing list for review. Individual developers on the list further
test this solution. If they find any problems with the solution,
they suggest improvements to the originator. After a careful
review, the originator makes changes to the code and again tests
the solution and posts the improved solution on to the list. The
process is repeated until it is approved. Once the tested solution
is approved by the list, it can be committed to the source by
any of the developers, although it is preferred that the originator
of the change performs the commit. Each commit results in a
summary of changes being automatically posted to the Concurrent
Version Control System (CVS) mailing list. All the members of
the core group review the changes to ensure that changes are
appropriate. Changes are also reviewed by developers outside
the core group. A core group member volunteers to serve as the
release manager as the project nears a product release. The release
manager identifies outstanding problems and their solutions and
makes suggested changes. The role of release manager is rotated
among the members of the core group.

Woods, D. et al [12] suggested the open source development model
for the enterprise as shown in Fig. 3. In this model each project
begins with the initial determination of an idea or need which
can originate from any one person or community. The next step
in the process is the initial development for a proof of concept
to determine the feasibility of the project, leading directly into
the initial public prototype. The public prototype’s development
is the core infrastructure surrounding the project and consists of
the initial steps at programming for the new software program.
The intent of the public prototype is to assist in the creation of a
community around the prototype with a clear understanding of
the original project’s proof of concept. Through time, the initial
prototype is opened for review and contributions are made by
others within the community. Each subsequent addition to the
software program is released reflecting an incremental evolution
in the product development. After this initial core development,
the project will either become stagnant or will continue to evolve
and mature. Stagnation or abandonment of open source projects
may occur through a perception of completion for the project,
poor project leadership which removes incentives for future
contributors, or simply through lack of interest.

Fig. 3: Woods, D. (2005) Open Source for the Enterprise, p. 17,
Fig. 1-1

Fig. 4: Open source system development cycle
Source: (Wu and Lin, 2001, p.34)

Schweik and Semenov [13] propose an OSSD project life cycle
comprising three phases: 1. project initiation 2. Going ‘open’,
and 3. Project growth, stability or decline. Each phase
is characterized by a distinct set of activities. Requirements for
a new project are often based on what open source developers
themselves want or need. During project initiation, the project
core is developed upon which others build. Going ‘open’
involves a choice on the part of the project founders to follow OSS
licensing principles. It also ensures that the project enjoys
the support of a core group of dedicated developers, shows
technical promise and is of interest to future developers,
and that a sufficient amount of the original requirements

40  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

have been solved to create a framework in which future
development can take place. In this phase appropriate technologies
and web sites need to be chosen to act as a vehicle for sharing code
and recruiting developers. The final phase, growth, stability or
decline, poses an element of risk for open source projects: will
the project generate enough interest to attract developers and
users globally to use the product and participate in further
programming, testing or documentation.
Ming-Wei Wu and Ying-Dar Lin [14] proposed a development
model for open source by incorporating the open source licensing
and version control as shown in Fig. 4. The open source software
development cycle, allows literally any-one to participate in
the process, but having multiple participants means a massive
coordination effort. Participants or co-developer scattered
across the globe must agree on a version control system to avoid
development chaos. Before the official release a licensing model
must be decided from the three general categories i.e. free- the
program can be freely modified and redistributed; copyleft the
owner gives up intellectual property and private licensing finally
GPL compatible where licenses are legally linked to the GPL
licensing structure.

Fig. 5: Jorgensen Life cycle
Mockus et al [15] describe a life cycle that combines a decision-
making framework with task-related project phases. The model
comprises six phases:
1.	 Roles and responsibilities,
2.	 Identifying work to be done,
3.	 Assigning and performing development work,
4.	 Pre-release testing,
5.	 Inspections, and
6.	 Managing releases.
The model has a strong managerial focus emphasizing developer
management and the work to be done, rather than on product-
related activities. The model proposed by Mockus et al adequately
caters for the planning phase of the SDLC but is less explicit
regarding other phases. Furthermore, Mockus et al assume that
some sort of prototype already exists, failing to explain where
design and analysis phases occur within their model.
Jorgensen [16] provides a more detailed description of specific
product related activities that underpin the OSSD process. His
model is shown in Fig. 5.
stages or sets of activities proposed are:
Code: Code is submitted by talented developers for review
and improvement by respected peers.
Review: Most (if not all) code contributions are reviewed. Truly
independent peer review is a central strength of this process.
Pre-commit test: Review is followed by an unplanned,
yet thorough, testing of all contributions for a particular code
change. While informal, this phase is taken very seriously as
negative implications of permitting a faulty contribution can
be considerable.
Development release: If the code segment is deemed release-ready
it may be added into the development release.
Parallel debugging: Development releases of software undergo a
rigorous debugging phase where any number of developers is
able to scrutinize the code in search of flaws.

Production release: Where development versions are deemed
stable, they are released as production versions.
The process is repeated incrementally for new modules – reinforcing
the cyclical nature of all open source projects where there is no real
end point - unlike many commercial projects. Jorgensen’s model
is widely accepted as a framework for the OSSD process.
Roets Minnar et al [17] expands on Jorgensen’s life cycle model
and incorporates aspects of previous models. Their model (Fig. 6)
also attempts to encapsulate the phases of the traditional SDLC.
In this model Jorgensen’s code phase is replaced by generic
initiation phase. This phase refers to developed code that is used
as a prototype for further progress on a particular project. The
initiation phase moves into a cycle of code review and further
contribution. The number of iterations occurring at this phase.
Once a piece of code is considered adequate for inclusion
in a development release, pre-commit testing is performed to
ensure that this new piece of code, once added, does not break
the existing release. A process of debugging and reincorporation
of code into the development release then takes place. This is
again an iterative process occurring within the community
web space. Eventually, code forms part of a production release
which is generally managed by a core developer. Production
releases take the form of a prototype that can be used in the
initiation phase of the next iteration of that project, component
or code segment.
Although many existing OSS projects have successfully developed
individual practices and specific processes, it is possible to define
some common characteristics that can be identified in most of the
OSS Development projects [18].
•	 Collaborative development
•	 Globally distributed actors
•	 Voluntariness of participation
•	 High diversity of capabilities and qualifications of all

actors
•	 Interaction exclusively through web-based technologies
•	 Individual development activities executed in parallel
•	 Dynamic publication of new software releases
•	 No central management authority
•	 Truly independent, community-based peer review
•	 ‘Bug driven’ development

V. Software Engineering: OSS vs. Traditional Software 	
Development Models
Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development, operation,
and maintenance of software, and the study of these approaches;
that is, the application of engineering to software.

Fig. 6: Model of Roets, Minnaar, et al.

  International Journal of Computer Science and Technology  41

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 2, June 2011

Traditional software development methods follows a software
engineering principals is essentially a science about how software
should be made not how it is made. The development model of
OSS differs significantly from the traditional software engineering
models as described in text books. Therefore the comparison
between the two is like a comparison between reality and idealized
model of development. Comparison between the two can not
tell us which one is better than the other. So the best way is to
find out where the Open source software development following
the software engineering principles and at which point it is not
following the guidance of software engineering.

The software engineering tasks include analysis of the system
requirements, Design, development, implementation of the
software, and testing the software to verify that it satisfies the
specified requirements. In traditional software development as
discussed earlier, these tasks comprises in four broad phases:
planning, analysis, design, and implementation. In Open Source
Software development, these stages tended to be conFig.d
differently. The first three phases of planning, analysis, and design
are concatenated and performed typically by a single developer
or small core group [19]. The planning phase is probably best
summarized by Raymond’s phrase of a single developer perceiving
“an itch worth scratching.” This leads to construction of an initial
prototype. Although the requirement engineering as per the
software engineering principles is not done in OSS project but on
OSS the developers are users of the software, they understand
the requirements in a deep way. As a result, the ambiguity that
often characterizes the identification of user needs or requests for
improvement in the traditional software development process is
eliminated as programmers know their own needs[20]. Design
decisions also tended to be made in advance before the larger pool
of developers starts to contribute. Systems are highly modularized
to allow distribution of work and reduce the learning curve for new
developers to participate (they can focus on particular subsystems
without needing to consider the system in its totality). The
implementation phase in the Open Source Software development
life cycle consists of several subphases as suggested by Feller
and Fitzgerald (2002), which include Code submission, Review,
Pre-commit test, Development release, Parallel debugging (the so-
called Linus’ Law “given enough eyeballs, every bug is shallow”)
and finally a Production release. The Evolution and Maintenance
of software is another important point to compare. Traditional in
house development have systematic plan for system testing and
maintenance. Whereas in Open source development Code quality
is maintained largely by “massively parallel debugging” (i.e.,
many developers each using each other’s code) rather than
by systematic testing or other planned, prescriptive approaches.
Although Open Software development encourages active
participation of potential users but not pay enough attention on
reflection and reorganization.

Roets Minnar et al also compared their model in a similar manner
to the traditional SDLC as shown in Fig. 7. Planning, analysis
and design phases are largely undertaken by the initial project
founder.

Fig. 7: comparison of OSSD life cycle with SDLC

It may be concluded that open source development is not software
engineering done poorly. The various software engineering
processes are at the center of open source development activity,
and are heavily dependent on each other and processes from other
areas. Ultimately, the degree of quality with which these processes
are performed determines the resulting quality for the products
of an open source. Requirements analysis, prototyping, testing,
version and release management, bug triaging, deployment, and
documentation make up software engineering in open source
project. Alfonso Fuggetta [21] mentions that “rapid prototyping,
incremental and evolutionary development, spiral lifecycle, rapid
application development, and recently extreme programming and
the agile software process can be equally applied to proprietary
and open source software”. Firstly if we find the analogy of OSS
development with prototype we find that the requirements artifacts
are not clearly defined in OSS project and typical OSSD processes
start after the release of a software prototype as OSS and are just
aimed to improve and maintain this prototype. Thus, an already
existing software prototype seems to be a prerequisite for the
requirements definition processes which typically occur in OSSD
projects. The spiral model originally proposed by Boehm is an
evolutionary software process model that couples the iterative
nature of prototyping with the control and systematic aspects of
the linear sequential model. In this model software is developed
in a series of incremental releases. The OSS development process
starts with early and frequent releases. Over time, both the Spiral
Model and the Open Source Development Model continue to refine
their respective projects by an iterative process[22]; however,
the open source development also seems to adopt some parts of
the incremental approach, in which essential features are grown
methodically and are not released until they are properly finished.
Moreno Muffatto[23] highlighted the Similarities between
various software development models and the open source
development process and find that open source community has
taken advantage of the strong points of existing development
process models. The development of open source software is
based on the community of voluntary and independent software
developers. A lot of importance is given to human resources, i.e.
each programmer's knowledge and skills, just as in the Build and
Fix model. End-users are involved in the development process as
well by providing important feedback. This involvement means
that particular attention is given to user requirements, as is the
case in the Waterfall Model and all of those that followed. The

42  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

development community then uses feedback to more accurately
define product specifications and produce frequent releases, as
is the case in the Prototyping Model. Large-scale open source
projects are managed using modularity. The overall project is
carefully divided into subprojects and the various functions and
features are developed in an incremental (Iterative Model) and
concurrent (Evolutionary Model) way. The parallel development
of different modules (Evolutionary Model) also speeds up the
development process. Overall, we can see that the open source
community has taken advantage of the strong points of existing
development process models. The way software is developed in
this community is becoming more and more similar to the way it
is developed using the Spiral Model.

Agile methods represent new approaches in the spectrum of
software development methods. The aim of these practitioner-
oriented software development methods is to make a software
development unit more responsive to changes. Juhani Warstaa and
Pekka Abrahamsson [04] show that OSS and agile development
methods have many similarities. An agile software development
method has been defined with the following characteristics:
incremental (small software releases, with rapid cycles),
cooperative (customer and developers working constantly together
with close communication), straightforward (the method itself
is easy to learn and to modify, well documented), and adaptive
(able to make last moment changes). It has been find by various
researchers that the OSS development method is close to the
definition of an agile software development method as OSS projects
are iteratively developed, incrementally released, reviewed and
refined by software development peers in an ongoing agile manner.
Fuggetta [21] has mentioned one more open source development
method that is the Agile method Extreme programming (XP). XP
try improve classic waterfall model by trying to start coding as
early as possible but without creating a full-fledged prototype as
the first stage. Open source development is also starts with the
development of source code by developer’s personal itch. All the
Agile methods are in essence applicable to open source software
development, because of their iterative and incremental character.
XP & Open Source Development share the same root. Both XP
and most open source are rooted in minimization of planning,
organization, testing, etc. rather, both tend to focus on maximizing
time spent programming.

VI. Conclusions
Open source software development methodology in recent years
is emerging as an alternative approach for the development of
software projects despite that fact that no mature development
methodology exists. There are many theoretical approaches
that try to explain the phenomenon of open source development.
This paper summarizes the nature, characteristics and current
knowledge about OSS development process also compares
and examines software engineering practices followed in open
source development. Different development models of Open
Source software has been discussed and theoretical study has
been made to find out the software engineering practices in
OSS development by comparing it with the traditional software
engineering development models. It has been observed that
OSS development process not completely violating the software
engineering principles. This is due to the fact that most of the
OSS developers are the IT professionals having knowledge
of software engineering principles. Their hidden knowledge
of software engineering enforce them to apply consciously or
unconsciously the traditional software engineering principles

in OSS development. This is particularly true in case of large
OSS projects where the team work is possible only after defining
and enforcing some rules. Analysis shows that Agile software
development practices are closely aligned to OSSD practices and
OSS approaches can be seen as one variant of the multifaceted
agile methods[04].

VII. References
[1]	 Open source Initiatives, [Online] Available : http://www.

opensource.org/docs/osd.
[2]	 Kirk St. Amant , Brian still (edited), "Handbook of Research

on Open source Software Technological, Economic and
Social perspectives", Pub Information Science References,
USA (2007).

[3]	 Tiwari Vinay, "Some Observations on Open Source Software
development on Software Engineering perspective",
International Journal of Computer Science and Information
Technology vol. 2 No. 6 pp. 113-125 (2010).

[4]	 Juhani Warsta, Pekka Abrahamsson, "Is open source software
development essentially an Agile method?", Third workshop
on open source software engineering, Portland, Oregon,
USA.(2003)

[5]	 Vixie, P., "Software Engineering, open sources: voices from
the open source revolution", Sebastopol, California: O’Reilly
and associates. (1999).

[6]	 Eric S. Raymond, "The Cathedral and the Bazaar: Musingson
Linux and Open Source by an Accidental Revolutionary",
O’Reilly & Associates, (1999).

[7]	 Gregor J. Rothfuss, "A Framework for Open Source Projects",
Master Thesis, University of Zurich, (2002)

[8]	 Roger S. Pressman, "Software Engineering A Practitioner’s
Approach", McGraw Hill, 4th Edition,(1997).

[9]	 Yi Wang, "Defeng Guo EMOS/1: An Evolution Metrics
Model for Open Source Software", source internet.

[10]	Walt Scacchi, Joseph Feller et al, "Understanding Free/Opne
Source Software Development Process", Software Process
Improvement and Practic;11:95-105(2006).

[11]	S. Sharma, V. Sugumaran, B. Rajgopalan, "A Framework
for creating hybrid-open source software communities",
Information Systems Journal, vol. 12, pp.7-25,(2002)

[12]	Woods, D., Guliani, G., "Open Source for the Enterprise
Sebastopol", CA: O’Reilly Media, Inc. (2005)

[13]	Schweik, C. M., Semenov, A., "The institutional design
of open source programming: Implications for addressing
complex public policy and management Problems", source
internet, (2003).

[14]	Ming-Wei Wu, Ying-Dar Lin., "Open source software
development: an overview. Computer", 34(6):33–38,
(2001).

[15]	Mockus, A., Fielding, R. T., Herbsleb, J. D.,"Two case
studies of open source software development: Apache and
Mozilla". ACM Transactions on Software Engineering and
Methodology, 11(3), 309-346 (2000).

[16]	Jorgensen, N., "Putting it all in the trunk: Incremental
software development in the FreeBSDopen source project".
Information Systems Journal, 11(4), 321-336,(2001).

[17]	Rinette Roets, Marylou Minnaar, Kerry Wright, "Open
source: Towards Successful Systems Development Projects in
Developing Countries", Proceedings of the 9th International
Conference on Social implications of computers in developing
countries, Sao Paulo, Brazil, (2007).

[18]	Stefan Dietze, "Agile Requirements Definition for Software
Improvement and Maintenance in Open Source Software

  International Journal of Computer Science and Technology  43

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 2, June 2011

Development", Proceedings of SREP’05, Paris, France,
August 29–30, (2005)

[19]	Brian Fitzgerald, "The Transformation of Open Source
Software", MIS Quarterly Vol. 30 No. 3, pp. 587-598,
(2006)

[20]	Kevin Crowston, Barbara Scozzi, "Exploring the Strengths and
Limits of Open Source Software Engineering Processes: 	 A
Research Agenda", 2nd Workshop on Open Source Software
engineering, , Orlando, Florida, May 25, 2002

[21]	Fuggetta, A., "Open Source Software- An Evaluation, Journal
of System and Software", 66,77-90, (2003).

[22]	Daniel Blaney, Diana Lenceviciene, Ben Peterson, Zijiang
Yang, "Open Source Software Development Model", source
internet (scholar.google.com).

[23]	Moreno Muffatto, "OPEN SOURCE A Multidisciplinary
Approach", Imperial college press,(2006).

Mr. Vinay Tiwari is qualified computer
professional having done PGDCA with
distinction (1989) and Master in Computer
Applications (2000). Currently pursuing his
Ph.D. Degree from R.D. University, Jabalpur.
He has more than 19 years professional
experience, 15 years of teaching experience
at UG level and 10 years at P.G. level. He is
a regular teaching counselor of Indira Gandhi

National Open University for BCA/MCA courses from last 15
years and R.D. University Distance Education for last 7 years. He
is a permanent resource person of Computer Refresher Courses
organized by Academic Staff college for college teachers. His
Area of interests are Computer Programming, Web Designing
and Software Engineering. In the last 5 years he has attended 4
International and 5 National conferences organized at different
places and presented research papers. His two books have already
been published on computers.

44  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 2, June 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

