
Abstract
There are several  protocols and mechanisms have been proposed 
to address the problem of initial secure key deployment in  
wireless networks. Most existing approaches work either with 
a small number of wireless devices (i.e., two) or otherwise 
rely on the presence of an auxiliary device.  On the other hand, 
such components should support security applications such as 
message integrity, authentication, and time stamping. The latter 
are efficiently implemented by Dynamic  Message Authentication 
Codes (DMAC). As clearly stated in the literature, current 
approved implementations of DMAC require resources that 
cannot be supported in constrained components. An approach to 
implement a compact DMAC by the use of stream ciphering is 
presented in this paper.
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I. Introduction
In the Wireless Networks  message  integrity and authenticity, and 
replay prevention, are essential in security-related communications. 
Here, a receiver is expected to be able to verify that a received 
message, originally transmitted by a valid source, was not 
changed. Also, the receiver has to verify that the message was 
not transmitted by a cloned source, and is not a retransmission 
of an originally genuine message transmitted in the past by a 
valid source. Technically, verifying message integrity and 
authenticity is based on the receiver’s ability to prove to itself 
that the transmitter stores a valid secret key that was used when 
the message was transmitted. Surely, symmetric and asymmetric 
cryptographic schemes can also be used in satisfying the above. 
In this paper, we treat the case where the facility at the data source 
has limited resources. In such environments, message integrity and 
authenticity is usually verified using Message Authentication Code 
(MAC). A fundamental cryptographic primitive is that of Message 
Authentication Codes (MAC), namely, methods for convincing 
a recipient of a message that the received data is the same that 
originated from the sender. MACs are extremely important in 
today’s design of secure systems since they reveal to be useful 
both as atomic components of more complex cryptographic 
systems and as themselves alone, to guarantee integrity of stored 
and transmitted data. Traditional message authentication schemes 
create a hard authenticator, where modifying a single message bit 
would result in a modification of about half the authentication tag. 
These MACs fit those applications where the security requirement 
asks to reject any message that has been altered to the minimal 
extent. In many other applications, such as those concerning  data, 
there may be certain modifications to the message that may be 
acceptable to sender and receiver, such as errors in reading  data 
or in communicating passwords through very noisy channels. This 
new scenario, not captured by the traditional notion of MACs, 
motivated the introduction and study in [5] of a new cryptographic 
primitive, a variant of MACs, which was called  Dynamic  Message 
Authentication Code (DMAC); namely, methods that propagate 
“acceptable” modifications to the message to “recognizable” 

modifications in the authentication tag, and still retain their 
security against other, unacceptable modifications.

II. MAC and DMAC  Context 
As described above, MAC(M,K) is a one-way transformation 
of the message M and a secret key K. The implementation this 
transformation can be based on various approaches. Dynamic  
Message Authentication Code (DMAC) is a hash transformation 
parameterized with a secret key. That is, it is an implementation 
of MAC(M,K). In this paper, we treat a standardized DMAC, 
specified in [1-4]. The security of such implementations has 
been revised [5], stating that the attacks “do not contradict the 
security proof of DMAC, but they improve our understanding of 
the security of DMAC based on the existing cryptographic hash 
functions.” The suggested implementation of DMAC is of the form   
DMAC (text,K )= H[Kout]||H[Kin||(text)];
where
•	 H is a cryptographic hash function,
•	 Kin and Kout are two keys, derived from K,
•	 ||denotes a concatenation, and
•	 text is the text to be hashed together with K. In relation to the 

challenge response procedure of we adopt an implementation 
where

text = C||M. The following is one recommended way of constructing 
Kin and Kout out of K. Let K be b-bytes long. opad and ipad denote 
b-byte values, consisting, respectively, of b repetitions of the byte 
01011100 and 00110110. Then, Kout =K  opad and Kin = K  ipad, 
where   denotes an XOR. Any standard hash (e.g., SHA-1 [6]), as 
well as the above specified DMAC implementation, is specified 
in a way which facilitates the processing of a relatively long text, 
by iteratively processing it in parts. That is, text is broken into 
sections, which are processed one at a time. Each such section is 
processed by a one-way block transformation whose parameters 
are limited in size to that of the processed section. This general 
approach is especially suitable when dealing with constrained 
hardware resources. Even if text is a few hundred of bits long, 
where K is about 100 bits, it would still be recommended to 
process text in parts. 

III. Dynamic MAC 
The  property that we can require from DMACs is that of preimage-
resistance. Informally, we require that the tagging algorithm, if 
viewed as a function on the message space, is hard to invert, 
no matter what is the distribution on the message space. (Later, 
while showing the applications of DMACs to biometric entity 
authentication, this property will be useful in proving that the 
entity authentication scheme obtained is secure against adversaries 
that can gain access to the DMAC output from the biometric 
storage file.)

A. Definition
The dm-ac-as-MAC (Kg,Tag,Verify) is (t, €)-preimage-resistant if 
the following holds. Let k be generated using Kg; for any algorithm 
Adv running in time at most t, if Adv queries algorithm Tag
(k, ·) with adaptively chosen messages, thus obtaining pairs (m1, 
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t1), . . . , (mq, tq), and then returns a message m0, and is given a 
value tag =Tag(k,m), the probability that Adv(tag) returns m0 
such that Verify (k,m0 , tag) = 1 and dm(m0,mi) ≥ γ for i = 0, 1, . 
. . , q, is at most €.
We note that essentially all conventional MAC constructions 
in the literature would satisfy an analogue preimage-resistance 
requirement. However it is easy to transform a MAC into one that 
is not preimage-resistant and for some applications like biometric 
identification, it can be desirable to require that the MAC used is 
preimage-resistant (or otherwise an accidental loss of the MAC 
output could reveal a password or some data to an adversary). A 
second additional property that we can require from DMACs is 
that of tag public verifiability. Informally, we require that, given 
two tags obtained from two different messages, it is possible to 
eficiently verify that the two messages have small distance, without 
using any secret key. while showing the applications of DMACs 
to biometric entity authentication, this property will be useful in 
obtaining a network entity authentication scheme, where the server 
does not need to run the DMAC to verify tag correctness.

B. Chippers
Cipher is a symmetric encryptor (i.e., the transmitter and receiver 
share the same secret key). The key forms a seed which generates a 
pseudorandom keystream. At the transmitting end, this keystream 
is XOR with the cleartext stream, yielding a ciphertext stream. 
The receiver, having the same seed key, generates synchronously 
the same keystream. XORing with the received ciphertext yields 
the cleartext back. Stream ciphers operate at a higher speed than 
block ciphers and have relatively low hardware complexity. 
Fundamental security requirements that should be satisfied by a 
stream cipher concern randomness characteristics of the generated 
keystream and inability to recover the secret seed key by knowing 
the generated keystream. Development and analysis of stream 
ciphers are subject of continuous activities.
Chipper

C. DMAC Implementation 
First of all, we remark that several simple constructions using 
arbitrary error correcting codes and or dinary MACs fail in satisfying 
even the approximate correctness and security requirements 
of DMACs. These include techniques such as interpreting the 
input message as a codeword, and using a conventional MAC 
to authenticate its decoding (here, the property of approximate 
correctness fails). Other techniques that also fail are similar uses of 
fuzzy commitments from [9], fuzzy sketches from [4] and reusable 
fuzzy extractors from [2]. We note however that there are a few 
simple constructions that meet the approximate correctness and 
security requirements of DMACs but don’t meet the preimage-
resistance or the efficiency or the tag public variability requirement. 
The simplest we found goes as follows. Let us denote as (K,T,V) 
a conventional MAC scheme. The tagging algorithm, on input 
key k and message m, returns tag = m|T(k,m). The verifying 
algorithm, on input k,m0, tag, sets tag = t1 | t2 and returns 1 if and 
only if d(t1,m0) ≤ δ and V (k, t1, t2) = 1, where d is the distance 
function. The scheme satisfies the approximate correctness and 

security, and the tag public verifiability requirements; however, 
note that the tag of this scheme contains the message itself and 
therefore the scheme is neither preimage-resistant.

D. DMAC  Analysis
Informal description. We explain the ideas behind this scheme 
in two steps. First, we explain how to use a probabilistic TCR 
hash function to guarantee that outputs from this hash function 
will have some additional distance-preserving properties. Second, 
we show how we can use such probabilistic TCR hash function 
to construct an approximately correct and secure MAC. We 
achieve a combination of distance-preserving properties and target 
collision resistance by making a TCR hash function probabilistic, 
and using the following technique. First, the message bits are 
randomly permuted and then the resulting message is written as 
the concatenation of several equal-size blocks. Here, the size of 
each block could be the fixed constant size (e.g., 512 bits) of the 
input to compression functions (e.g., SHA) that are used as atomic 
components of practical constructions of TCR hash functions. 
Now multiple hashes are computed, each being obtained using 
the TCR hash function, using as input the concatenation of a 
dierent and small enough subset of the input blocks. Here, the 
choice of each subset is done at random, and specifically, using 
the output of a random pairwise-independent hash function on 
input the message. Furthermore, each subset has the same size, 
depending on the length of the input and on the desired distance-
preserving properties. The basic idea so far is that by changing the 
content of some blocks of the message, we only change a small 
fraction of the inputs of the atomic hashes and therefore only a 
small fraction of the outputs of those hashes will change. Given 
this ‘probabilistic TCR hash function’, the tagging and verifying 
algorithm can be described as follows. The tagging algorithm, on 
input a random key and a message, uses another value, which can 
be implemented as a counter incremented after each application (or 
a random value chosen independently at each application). Then 
the algorithm computes the output of the finite pseudo-random 
function on input such value and divides this output in two parts: 
the first part is a random key for the TCR hash function and the 
second part is a sequence of pseudo-random bits that can be used 
as randomness for the above described probabilistic TCR hash 
function. Now, the tagging algorithm can run the latter function 
to compute multiple hashes of the message. The tag returned 
is then the input to the finite pseudo-random function and the 
hashes. The construction of the verifying algorithm is necessarily 
dierently from the usual approach for exactly correct and secure 
MACs (where the verifying algorithm runs the tagging algorithm 
on input the received message and checks that its output is equal 
to the received tag), as this algorithm needs to accept the same 
tag for multiple messages. Specifically, on input the tag returned 
by the tagging algorithm, the verifying algorithm generates a key 
and pseudo-random bits for the probabilistic TCR hash function 
exactly as the tagging algorithm does and computes the hashes of 
the received message. Finally, the verifying algorithm checks that 
the received and the computed sequences of hashes only dier in a 
small enough number of positions. Formal description. Let k be 
a security parameter, t be an approximation parameter, and c be 
a block size constant.  We denote by PIH = {pih | pih : {0, 1}n → 
{0, 1}n} a set of pairwise independent hash functions over {0, 1}
m, by TCRH = {tcrhK : K ε  {0, 1}k} a finite TCR hash function, 
and by F = {fK : K  {0, 1}k} a finite pseudo-random function. 
We now present our construction of an approximately-secure and 
approximately correct MAC, which we denote as (Kg,Tag,Verify). 
Instructions for Kg: generate a uniformly distributed k-bit key K 
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Input to Tag: a k-bit key K, an n-bit message M, parameters p, δ, 
γ, a block size 1c and a counter ct.
Instructions for Tag:
– Set x1 = n/2δ and x2 = 10 log(1/(1 − p))
– Set (u|π|pih) = fK(ct), where u ε {0, 1}k, π is a permutation of 
{0, 1}n and pihε PIH
– Write π(M) as M1| · · · |Mdn/ce, where |Mi| = c for i = 1, . . . 
, dn/ce
– Use pih(M) as randomness to randomly choose x1-size subsets 
S1, . . . , Sx2 of {1, . . . , dn/ce}
– For i = 1, . . . , x2,
let Ni = Mi1 | · · · |Mix1, where Si = {i1, . . . , ix1}
let shi = tcrhu(Ni)
– Let subtag = sh1| · · · |shx2
– Return: tag = ct|subtag.
– Set ct = ct + 1 and halt.
Input to Verify: parameters δ, γ, a block size 1c , a k-bit key K, 
an n-bit
message M0 and a string tag
Instructions for Verify:
– Write tag as ct|u|sh1| · · · |shx2
– Set x1 = n/2δ and x2 = 10 log(1/(1 − p))
– Set (u|π|pih) = fK(ct), where u ε  {0, 1}k, π is a permutation of 
{0, 1}n and pih ∈ PIH
– Write π(M0 ) as M01| · · · |M0 dn/ce, where |M0 i | = c for i = 
1, . . . , dn/ce
– Use pih(M0) to randomly select x1-size subsets S01, . . . , S0 
x2 of {1, . . . , dn/ce}
– For i = 1, . . . , x2,let N0 i = M0 i1| · · · |M0ix1, where S0i = {i1, 
. . . , ix1} let sh0i = tcrhu(N0i)– Check that sh0i = shi, for at least 
αx2 of the values of i  {1, . . . , x2}, for α = 1 − 1/2√e − 1/2e.
– Return: 1 if all verifications were successful and 0 otherwise.
The above construction satisfies the following
Theorem Assume that F is a (tF , qF , F )-secure pseudo-random 
function and H is a (tH, qH, H)-target collision resistant hash 
function. Then (Kg,Tag,Verify) is a (p, δ) approximately correct 
and (dm, γ, tA, qA, ε A)-approximately secureMAC,
where
• dm is the Hamming distance
• γ = 2δ
• A ≤ F + H · qA + 1 − p
• qA = qF ≥ 1 and qH = 10 log(1/(1 − p))
• tA = min(tA,1, tA,2)
• tA,1 = tF −O(qA(n(log n+log(1/(1−p)))+log(1/(1−p))+time(hu; 
nc/2δ))
• tA,2 = tH − O(n(log n + log(1/(1 − p))) + time(fK; |ct|)) and n 
is the length of the message, c is a block size constant, ct is the 
counter input to algorithm Tag, and time(g; x) denotes the time 
required to compute function g on inputs of size x.

E. Performance
We analyze the main performance parameter of interest  that is, 
the communication complexity of our scheme (Kg,Tag,Verify). 
We see that the length of the returned tag is x2 · c, where x2 = 
10 log(1/(1 − p)), and c is the length of the output of the TCR 
hash function. We note that c is constant with respect to n, and 
acceptable settings of parameter p can lie anywhere in the range 
[1 − 1/2(log n)1+€, 1], for any constant € > 0, and where n is the 
length of the message input to the scheme. Therefore the length of 
the tag returned by the scheme can be as small as 10c(log n)1+€ 
; most importantly, this holds for any value of parameter δ. The 
tag length remains much shorter than the message even for much 
larger settings of p; for instance, if p = 1 − 2−√n, the tag length 

becomes O(√n).

IV. Conclusion
Wireless SensorNetworks pose a need for efficient implementation 
of MAC. To achieve efficiency, while not sacrificing security, 
there is a need to evaluate new approaches, while also utilizing 
any characteristic of the specific implementation of MAC that 
can enhance efficiency. A complete highly compact MAC 
implementation, based on stream ciphering, was presented. The 
principle was to implement a hash transformation based on the 
stream cipher, where the strength of the hash is associated with 
the underlying security of the cipher. The hash is then utilized 
to implement DMAC, based on standard procedures. A specific 
implementation, based on DECIM (v2), a highly scrutinized 
stream cipher, was presented and analyzed in detail.
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