
Abstract
There are several protocols and mechanisms have been proposed
to address the problem of initial secure key deployment in
wireless networks. Most existing approaches work either with
a small number of wireless devices (i.e., two) or otherwise
rely on the presence of an auxiliary device. On the other hand,
such components should support security applications such as
message integrity, authentication, and time stamping. The latter
are efficiently implemented by Dynamic Message Authentication
Codes (DMAC). As clearly stated in the literature, current
approved implementations of DMAC require resources that
cannot be supported in constrained components. An approach to
implement a compact DMAC by the use of stream ciphering is
presented in this paper.

Keywords
Secured communications, DMAC, challenge response, ciphers.

I. Introduction
In the Wireless Networks message integrity and authenticity, and
replay prevention, are essential in security-related communications.
Here, a receiver is expected to be able to verify that a received
message, originally transmitted by a valid source, was not
changed. Also, the receiver has to verify that the message was
not transmitted by a cloned source, and is not a retransmission
of an originally genuine message transmitted in the past by a
valid source. Technically, verifying message integrity and
authenticity is based on the receiver’s ability to prove to itself
that the transmitter stores a valid secret key that was used when
the message was transmitted. Surely, symmetric and asymmetric
cryptographic schemes can also be used in satisfying the above.
In this paper, we treat the case where the facility at the data source
has limited resources. In such environments, message integrity and
authenticity is usually verified using Message Authentication Code
(MAC). A fundamental cryptographic primitive is that of Message
Authentication Codes (MAC), namely, methods for convincing
a recipient of a message that the received data is the same that
originated from the sender. MACs are extremely important in
today’s design of secure systems since they reveal to be useful
both as atomic components of more complex cryptographic
systems and as themselves alone, to guarantee integrity of stored
and transmitted data. Traditional message authentication schemes
create a hard authenticator, where modifying a single message bit
would result in a modification of about half the authentication tag.
These MACs fit those applications where the security requirement
asks to reject any message that has been altered to the minimal
extent. In many other applications, such as those concerning data,
there may be certain modifications to the message that may be
acceptable to sender and receiver, such as errors in reading data
or in communicating passwords through very noisy channels. This
new scenario, not captured by the traditional notion of MACs,
motivated the introduction and study in [5] of a new cryptographic
primitive, a variant of MACs, which was called Dynamic Message
Authentication Code (DMAC); namely, methods that propagate
“acceptable” modifications to the message to “recognizable”

modifications in the authentication tag, and still retain their
security against other, unacceptable modifications.

II. MAC and DMAC Context
As described above, MAC(M,K) is a one-way transformation
of the message M and a secret key K. The implementation this
transformation can be based on various approaches. Dynamic
Message Authentication Code (DMAC) is a hash transformation
parameterized with a secret key. That is, it is an implementation
of MAC(M,K). In this paper, we treat a standardized DMAC,
specified in [1-4]. The security of such implementations has
been revised [5], stating that the attacks “do not contradict the
security proof of DMAC, but they improve our understanding of
the security of DMAC based on the existing cryptographic hash
functions.” The suggested implementation of DMAC is of the form
DMAC (text,K)= H[Kout]||H[Kin||(text)];
where
•	 H is a cryptographic hash function,
•	 Kin and Kout are two keys, derived from K,
•	 ||denotes a concatenation, and
•	 text is the text to be hashed together with K. In relation to the

challenge response procedure of we adopt an implementation
where

text = C||M. The following is one recommended way of constructing
Kin and Kout out of K. Let K be b-bytes long. opad and ipad denote
b-byte values, consisting, respectively, of b repetitions of the byte
01011100 and 00110110. Then, Kout =K opad and Kin = K ipad,
where denotes an XOR. Any standard hash (e.g., SHA-1 [6]), as
well as the above specified DMAC implementation, is specified
in a way which facilitates the processing of a relatively long text,
by iteratively processing it in parts. That is, text is broken into
sections, which are processed one at a time. Each such section is
processed by a one-way block transformation whose parameters
are limited in size to that of the processed section. This general
approach is especially suitable when dealing with constrained
hardware resources. Even if text is a few hundred of bits long,
where K is about 100 bits, it would still be recommended to
process text in parts.

III. Dynamic MAC
The property that we can require from DMACs is that of preimage-
resistance. Informally, we require that the tagging algorithm, if
viewed as a function on the message space, is hard to invert,
no matter what is the distribution on the message space. (Later,
while showing the applications of DMACs to biometric entity
authentication, this property will be useful in proving that the
entity authentication scheme obtained is secure against adversaries
that can gain access to the DMAC output from the biometric
storage file.)

A. Definition
The dm-ac-as-MAC (Kg,Tag,Verify) is (t, €)-preimage-resistant if
the following holds. Let k be generated using Kg; for any algorithm
Adv running in time at most t, if Adv queries algorithm Tag
(k, ·) with adaptively chosen messages, thus obtaining pairs (m1,

Secured Initialization of Dynamic Message
Authentication in Wireless Devices

1Dr. D. Raghu, 2 Radha Krishna cheepi, 3Ch. Raja Jacub
1,2Nova College of Engg & Tech, Jangareddy gudem.

3Dept. of Computer Science, Nova College of Engineering, Jangareddy Gudem

 584  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

t1), . . . , (mq, tq), and then returns a message m0, and is given a
value tag =Tag(k,m), the probability that Adv(tag) returns m0
such that Verify (k,m0 , tag) = 1 and dm(m0,mi) ≥ γ for i = 0, 1, .
. . , q, is at most €.
We note that essentially all conventional MAC constructions
in the literature would satisfy an analogue preimage-resistance
requirement. However it is easy to transform a MAC into one that
is not preimage-resistant and for some applications like biometric
identification, it can be desirable to require that the MAC used is
preimage-resistant (or otherwise an accidental loss of the MAC
output could reveal a password or some data to an adversary). A
second additional property that we can require from DMACs is
that of tag public verifiability. Informally, we require that, given
two tags obtained from two different messages, it is possible to
eficiently verify that the two messages have small distance, without
using any secret key. while showing the applications of DMACs
to biometric entity authentication, this property will be useful in
obtaining a network entity authentication scheme, where the server
does not need to run the DMAC to verify tag correctness.

B. Chippers
Cipher is a symmetric encryptor (i.e., the transmitter and receiver
share the same secret key). The key forms a seed which generates a
pseudorandom keystream. At the transmitting end, this keystream
is XOR with the cleartext stream, yielding a ciphertext stream.
The receiver, having the same seed key, generates synchronously
the same keystream. XORing with the received ciphertext yields
the cleartext back. Stream ciphers operate at a higher speed than
block ciphers and have relatively low hardware complexity.
Fundamental security requirements that should be satisfied by a
stream cipher concern randomness characteristics of the generated
keystream and inability to recover the secret seed key by knowing
the generated keystream. Development and analysis of stream
ciphers are subject of continuous activities.
Chipper

C. DMAC Implementation
First of all, we remark that several simple constructions using
arbitrary error correcting codes and or dinary MACs fail in satisfying
even the approximate correctness and security requirements
of DMACs. These include techniques such as interpreting the
input message as a codeword, and using a conventional MAC
to authenticate its decoding (here, the property of approximate
correctness fails). Other techniques that also fail are similar uses of
fuzzy commitments from [9], fuzzy sketches from [4] and reusable
fuzzy extractors from [2]. We note however that there are a few
simple constructions that meet the approximate correctness and
security requirements of DMACs but don’t meet the preimage-
resistance or the efficiency or the tag public variability requirement.
The simplest we found goes as follows. Let us denote as (K,T,V)
a conventional MAC scheme. The tagging algorithm, on input
key k and message m, returns tag = m|T(k,m). The verifying
algorithm, on input k,m0, tag, sets tag = t1 | t2 and returns 1 if and
only if d(t1,m0) ≤ δ and V (k, t1, t2) = 1, where d is the distance
function. The scheme satisfies the approximate correctness and

security, and the tag public verifiability requirements; however,
note that the tag of this scheme contains the message itself and
therefore the scheme is neither preimage-resistant.

D. DMAC Analysis
Informal description. We explain the ideas behind this scheme
in two steps. First, we explain how to use a probabilistic TCR
hash function to guarantee that outputs from this hash function
will have some additional distance-preserving properties. Second,
we show how we can use such probabilistic TCR hash function
to construct an approximately correct and secure MAC. We
achieve a combination of distance-preserving properties and target
collision resistance by making a TCR hash function probabilistic,
and using the following technique. First, the message bits are
randomly permuted and then the resulting message is written as
the concatenation of several equal-size blocks. Here, the size of
each block could be the fixed constant size (e.g., 512 bits) of the
input to compression functions (e.g., SHA) that are used as atomic
components of practical constructions of TCR hash functions.
Now multiple hashes are computed, each being obtained using
the TCR hash function, using as input the concatenation of a
dierent and small enough subset of the input blocks. Here, the
choice of each subset is done at random, and specifically, using
the output of a random pairwise-independent hash function on
input the message. Furthermore, each subset has the same size,
depending on the length of the input and on the desired distance-
preserving properties. The basic idea so far is that by changing the
content of some blocks of the message, we only change a small
fraction of the inputs of the atomic hashes and therefore only a
small fraction of the outputs of those hashes will change. Given
this ‘probabilistic TCR hash function’, the tagging and verifying
algorithm can be described as follows. The tagging algorithm, on
input a random key and a message, uses another value, which can
be implemented as a counter incremented after each application (or
a random value chosen independently at each application). Then
the algorithm computes the output of the finite pseudo-random
function on input such value and divides this output in two parts:
the first part is a random key for the TCR hash function and the
second part is a sequence of pseudo-random bits that can be used
as randomness for the above described probabilistic TCR hash
function. Now, the tagging algorithm can run the latter function
to compute multiple hashes of the message. The tag returned
is then the input to the finite pseudo-random function and the
hashes. The construction of the verifying algorithm is necessarily
dierently from the usual approach for exactly correct and secure
MACs (where the verifying algorithm runs the tagging algorithm
on input the received message and checks that its output is equal
to the received tag), as this algorithm needs to accept the same
tag for multiple messages. Specifically, on input the tag returned
by the tagging algorithm, the verifying algorithm generates a key
and pseudo-random bits for the probabilistic TCR hash function
exactly as the tagging algorithm does and computes the hashes of
the received message. Finally, the verifying algorithm checks that
the received and the computed sequences of hashes only dier in a
small enough number of positions. Formal description. Let k be
a security parameter, t be an approximation parameter, and c be
a block size constant. We denote by PIH = {pih | pih : {0, 1}n →
{0, 1}n} a set of pairwise independent hash functions over {0, 1}
m, by TCRH = {tcrhK : K ε {0, 1}k} a finite TCR hash function,
and by F = {fK : K {0, 1}k} a finite pseudo-random function.
We now present our construction of an approximately-secure and
approximately correct MAC, which we denote as (Kg,Tag,Verify).
Instructions for Kg: generate a uniformly distributed k-bit key K

  International Journal of Computer Science and Technology  585

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

Input to Tag: a k-bit key K, an n-bit message M, parameters p, δ,
γ, a block size 1c and a counter ct.
Instructions for Tag:
– Set x1 = n/2δ and x2 = 10 log(1/(1 − p))
– Set (u|π|pih) = fK(ct), where u ε {0, 1}k, π is a permutation of
{0, 1}n and pihε PIH
– Write π(M) as M1| · · · |Mdn/ce, where |Mi| = c for i = 1, . . .
, dn/ce
– Use pih(M) as randomness to randomly choose x1-size subsets
S1, . . . , Sx2 of {1, . . . , dn/ce}
– For i = 1, . . . , x2,
let Ni = Mi1 | · · · |Mix1, where Si = {i1, . . . , ix1}
let shi = tcrhu(Ni)
– Let subtag = sh1| · · · |shx2
– Return: tag = ct|subtag.
– Set ct = ct + 1 and halt.
Input to Verify: parameters δ, γ, a block size 1c , a k-bit key K,
an n-bit
message M0 and a string tag
Instructions for Verify:
– Write tag as ct|u|sh1| · · · |shx2
– Set x1 = n/2δ and x2 = 10 log(1/(1 − p))
– Set (u|π|pih) = fK(ct), where u ε {0, 1}k, π is a permutation of
{0, 1}n and pih ∈ PIH
– Write π(M0) as M01| · · · |M0 dn/ce, where |M0 i | = c for i =
1, . . . , dn/ce
– Use pih(M0) to randomly select x1-size subsets S01, . . . , S0
x2 of {1, . . . , dn/ce}
– For i = 1, . . . , x2,let N0 i = M0 i1| · · · |M0ix1, where S0i = {i1,
. . . , ix1} let sh0i = tcrhu(N0i)– Check that sh0i = shi, for at least
αx2 of the values of i {1, . . . , x2}, for α = 1 − 1/2√e − 1/2e.
– Return: 1 if all verifications were successful and 0 otherwise.
The above construction satisfies the following
Theorem Assume that F is a (tF , qF , F)-secure pseudo-random
function and H is a (tH, qH, H)-target collision resistant hash
function. Then (Kg,Tag,Verify) is a (p, δ) approximately correct
and (dm, γ, tA, qA, ε A)-approximately secureMAC,
where
• dm is the Hamming distance
• γ = 2δ
• A ≤ F + H · qA + 1 − p
• qA = qF ≥ 1 and qH = 10 log(1/(1 − p))
• tA = min(tA,1, tA,2)
• tA,1 = tF −O(qA(n(log n+log(1/(1−p)))+log(1/(1−p))+time(hu;
nc/2δ))
• tA,2 = tH − O(n(log n + log(1/(1 − p))) + time(fK; |ct|)) and n
is the length of the message, c is a block size constant, ct is the
counter input to algorithm Tag, and time(g; x) denotes the time
required to compute function g on inputs of size x.

E. Performance
We analyze the main performance parameter of interest that is,
the communication complexity of our scheme (Kg,Tag,Verify).
We see that the length of the returned tag is x2 · c, where x2 =
10 log(1/(1 − p)), and c is the length of the output of the TCR
hash function. We note that c is constant with respect to n, and
acceptable settings of parameter p can lie anywhere in the range
[1 − 1/2(log n)1+€, 1], for any constant € > 0, and where n is the
length of the message input to the scheme. Therefore the length of
the tag returned by the scheme can be as small as 10c(log n)1+€
; most importantly, this holds for any value of parameter δ. The
tag length remains much shorter than the message even for much
larger settings of p; for instance, if p = 1 − 2−√n, the tag length

becomes O(√n).

IV. Conclusion
Wireless SensorNetworks pose a need for efficient implementation
of MAC. To achieve efficiency, while not sacrificing security,
there is a need to evaluate new approaches, while also utilizing
any characteristic of the specific implementation of MAC that
can enhance efficiency. A complete highly compact MAC
implementation, based on stream ciphering, was presented. The
principle was to implement a hash transformation based on the
stream cipher, where the strength of the hash is associated with
the underlying security of the cipher. The hash is then utilized
to implement DMAC, based on standard procedures. A specific
implementation, based on DECIM (v2), a highly scrutinized
stream cipher, was presented and analyzed in detail.

References
[1] 	 ANS Institution, “Keyed Hash Message Authentication

Code”, ANSI X9.71, 2000.
[2] 	 National Institute of Standards and Technology, “The Keyed-

Hash Message Authentication Code (HMAC)”, FIPS PUB
198, Information Technology Laboratory, 2002.

[3] 	 J. Kim, A. Biryukov, B. Preneel, S. Hong, “On the Security of
HMAC and NMAC Based on HAVALl, MD4, MD5, SHA-
0 and SHA-1”, Proc. Conf. Security and Cryptography for
Networks (SCN ’06), pp. 242-256, 2006.

[4] 	 National Institute of Standards and Technology, “Secure
Hash Standard”, FIPS PUB 180-1, Information Technology
Laboratory, 1995.

[5] GAO, “GAO-05-551 Radio Frequency Identification
Technology”, [Online] Available : www.gao.gov/new.items/
d05551.pdf, May 2005.

[6] 	 European Commission, “Draft Recommendation on RFID
Privacy and Security", [Online] Available : http://www.
edri.org/edrigram/number6.4/ec-recommandation-rfid, Feb.
2008.

[7] 	 G. Avoine, “RFID Security & Privacy Lounge”, [Online]
Available : www.avoine.net/ rfid/, 2009.

[8] 	 H. Chan, A. Perrig, D. Song. Random Key Predistribution
Schemes for Sensor Networks. In Proceedings of the IEEE
Symposium on Security and Privacy, 2003.

[9] 	 C.-H. Owen Chen, C.-W. Chen, C. Kuo, Y.-H. Lai, J. M.
McCune, A. Studer, A. Perrig, B.-Y. Yang, T.-C. Wu. GAnGS:
Gather, Authenticate ’n Group Securely. In Proceedings of the
14th Annual International Conference on Mobile Computing
and Networking, MO- BICOM, 2008

[10] W. Du, J. Deng, Y. S. Han, P. K. Varshney. A Pairwise Key
Pre-Distribution Scheme for Wireless Sensor Networks. In
ACM CCS, 2003.

 586  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

