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I. Introduction
In private key (symmetric key) cryptography, data exchanged can 
be protected by encryption. In this data is encrypted by encryption 
algorithms using Keys. Only users having same key can encrypt/
decrypt the data [12]. For secured communication between two 
parties they required to exchange secret key between them. Success 
of this scheme lies in secrecy of the shared key. Length of the key 
depends on algorithm used. Due to huge networks interconnecting 
many intermediate locations, secure key exchange is general ly not 
possible. Public Key Encryption involves pair of public/private 
keys and cryptographic operations. Public key is distributed online 
to all users but only the specific user knows the private key. Any 
unauthorised user who has access to exchanged public information 
will not be able to calculate shared secret unless that user knows the 
private key [12]. Public key encryption can be applied in Digital 
Signatures, Data Encryption and Key Agreement.

II. Mathematical Expression
Cryptographic operations are expressed mathematically. Public 
and private keys are related by mathematical function called 
one way function. In public key cryptography the public key is 
calculated using private key. Obtaining of private key from the 
public key is a reverse operation. If the private key is obtained 
from the public key and other public data, then the public key 
algorithm for the particular key is said to be cracked.  The difficulty 
of reverse operation increases as the key size increases. So public 
key algorithms operate on sufficiently large numbers to make 
the reverse operation practically impossible and thus make the 
system secure. 

III. Key Agreement
Key agreement is a method in which the devices/users 
communicating in the network establishes a shared secret 
between them by exchanging their public keys. Both the devices 
on receiving the other device’s public key perform key generation 
operation using its private key to obtain the shared secret [15]. 
The public keys are generated using private key and other shared 
constants. Suppose P be the private key of a device and U(P, C) 
be the public key. Since public key is generated using private 
key, the representation U(P, C) shows that the public key contain 
the components of private key P and some constants C where 
C is known by all the device taking part in the communication. 
Consider two devices A and B. Let PA and UA(PA, C) be the private 

key and public key of device A, and PB and UB(PB, C) be the 
private key and public key of device B respectively. Both device 
exchanges their public keys. Device A, having got the public key 
of B, uses its private key to calculate shared secret 
		  KA=Generate_Key(PA, UB(PB, C)
Device B, having got the public key of A, uses its private key to 
calculate the shared secret
		  KB=Generate_Key(PB, UA(PA, C)

Fig. 1: Calculating shared secret by A and B

The key generation algorithm ‘Generate_Key’ will be such that 
the generated keys at the device A and B will be the same, that is 
shared secret KA=KB=K(PA, PB, C). Since it is practically impossible 
to obtain private key from the public key. Any third party, having 
access only to the public keys UA(PA, C) and UB(PB, C), will never 
be able to obtain the shared secret K.

IV. Data Encryption
Encryption is a process in which the sender encrypts the message in 
such a way that only the intended recipient will be able to decrypt 
the message. Consider an example in which a device B whose 
private key and public key are PB and UB respectively. Since UB  
is public key all devices will be able to get it. For any device that 
needs to send the message ‘Msg’ in a secured way to device B, it 
will encrypt the data using B’s public key to obtain the cipher text 
‘Ctx’. The encrypted message, cipher text, can only be decrypted 
using B’s private key. On receiving the message, the B decrypts 
it using its private key PB. Since only B knows its private key PB   
none other including A can decrypt the message [16].

Fig. 2: Encrypted data send by A and its decryption by B

It is important that device A receives the correct public key 
from device B, i.e. no middleman must change the public key. 
Digital Certificate helps to deliver the public key in authenticated 
method.

V. Digital Signature
In this technique, message can be signed by a device using its 
private key to ensure authenticity of the message. Any device 
that has got the access to the public key of the signed device can 
verify the signature. Thus the device receiving the message can 
ensure that the message is indeed signed by the intended device 
and is not modified during the transit. If any the data or signature 
is modified, the signature verification fails [13]. Take a case in 
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which device A need to ensure the authenticity of its message, the 
device A signs its message using its private key PA. The device A 
will then send the message ‘Msg’ and signature ‘Sgn’ to device B. 
The device B, on receiving the message, can verify the message 
using A’s public key UA and there by ensuring that the message is 
indeed sent by A and is also not altered during the transit. Since 
only the device A knows its private PA key, it is impossible for 
any other device to copy the signature. 

Fig. 3: Message exchange through Digital Signature

A. Digital Certificate
Consider two devices X and Y establishing a shared secret. Both 
devices exchange their public keys. The devices calculate the 
shared secret using their private key and the other device’s public 
key. Now consider an intermediate point M through which all the 
communication happens. If M captures Y’s public key and sends 
M’s public key instead with Y’s identity, then X will end up in 
establishing shared secret with M and will communicate with M 
thinking that it is communicating with Y. This happened because 
there is no way for X to verify that the received public key is 
indeed that of Y. Here is now the Digital Certificate comes to play. 
For data transfer in a network there is an authority trusted by all 
devices. This Trusted Certificate Authority (CA) [14]	signs the 
public keys and the unique identifiers of all devices. These signed 
data (public key, IDs etc.) along with the signature arranged in 
a standard format is called as the certificate. All the devices that 
take part in secured and trusted communication have to obtain a 
certificate from the trusted authority.
Now the device X and Y exchanges their respective certificate 
instead of public key. These certificates are verified using CA’s 
public key. Even if the intermediate point M modifies the public 
key or any other data in any of the certificate, the certificate 
verification will fail. Some problem still exists. How to get the 
public key of the CA in a realistic way? The public key of the CA 
needs to be obtained by some other trusted method. For example, 
in cases of secure Internet browsing the certificate of CA installed 
in the device along with the web browser. 
The device that requires a certificate will send the certificate 
request to the CA. The request contains the device data such as 
device ID and device public key. The CA first finds the digest of 
the device data and CA specific data using a hash algorithm. CA 
then signs the hash, using its private key and combines the data and 
signature in a standard format to form a certificate and is given to 
the device. The CA usually does some background check to ensure 
the device is not hostile before issuing the certificate. An example 
of a standard digital certificate format is X.509 certificates [7].

Fig. 4: Formation of Certificate

On receiving a certificate, a device extracts the data from the 
certificate, checks the ID and other data in the certificate. The 
signature in the certificate is verified using CA’s public key.

Fig. 5: Verification procedure of certificate

B. Certificate Hierarchy
Due to distributed location of the devices that take part in 
communication, a central certificate authority may not suffice to 
issue and maintain the certificate of all the devices. Certificate 
hierarchy is the solution in this case. Trusted root CA will 
give permission to intermediate CAs to give certificate to the 
communicating devices by issuing the certificate to these 
intermediate CAs. These intermediate CAs then issue certificates 
to the device. There can be multiple levels of certificate hierarchy 
in which the intermediate CAs will give permission to other CA 
to issue certificate to the communicating devices.

Fig. 5: Certificate Hierarchy

If a device X obtained a certificate from an intermediate CA, 
then it has along with its device certificate, the certificate of the 
intermediate CA, which issued the certificate to the device X. 
Such device will have certificates of all intermediate CAs up to 
the root. Consider another device Y taking part in communication 
with device X. Device Y on receiving the X’s certificate may 
request X the certificate of intermediate CA who issued certificate 
to X. The device Y may end up in asking all the certificate of 
intermediate CAs till the root CA for successful verification of X’s 
device certificate. The device Y must at least has the self-signed 
root CA certificate obtained by a trusted means to successfully 
authenticate X’s certificate.

C. Protection of Public Keys 
The public keys are generally stored as certificates and the root 
CA public key is stored as self signed certificate. It is important 
that the public keys/certificates should be stored securely such that 
any third party cannot modify it. If Root CA certificate is modified 
then the attacker can make any certificate acceptable by the device 
thus defeating the certificate and secured communication. 

D. Authentication  
In one way authentication, only one party needs to provide its 
certificate to prove its authenticity and hence to create secured 
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channel. Once the secured channel is created the other party 
authenticates/authorize itself by providing a ‘user name and 
password’. This type of authentication is generally used in client-
server architecture. In this case the server maintains the database 
of all the authorized users. Only if the username and password are 
matched, the server gives out the secured information.  In two way 
authentication both the devices need to have a Digital Certificate 
from a trusted authority. Both devices exchange their respective 
certificates for authentication during handshake of key agreement 
protocol. This happens typically in peer-peer communication.

VI. Modular Arithmetic
Modular arithmetic is the commonly used arithmetic in public 
key cryptography. Modular arithmetic deals only with integers. 
Modular arithmetic over a number n involves arithmetic operations 
on integers between 0 and n – 1, where n is called the modulus. If 
the number happens to be out of this range in any of the operation 
the result, r, is wrapped around in to the range 0 and n – 1 by 
repeated subtraction of the modulus n from the result r. This is 
equivalent in taking the remainder of division operation r/n.
For e.g. for modulo 23 arithmetic
n=23, Let a=15, b=20
(a+b) mod n = (15+20) mod 23 = 35 mod 23 = 12
Since the result of a+b=35 which is out of the range [0,22], the 
result is wrapped around in to the range [0 22] by subtracting 35 
with 23 till the result is in range [0, 22].
a mod b is thus explained as remainder of division a/b. Subtraction 
and multiplication can also be explained similarly. A negative 
number is added repeatedly with n till it can be represented in 
the range [0, n-1]
The modular division a/b mod p is defined as a*b-1 mod p. b-1 is 
the multiplicative inverse of b.
Multiplicative inverse of number b with respect to mod p is defined 
as a number b-1 such that b*b-1 mod p = 1.

A. Congruent Relation:
Modular arithmetic is a congruent relation. Congruence is shown 
by the symbol ‘≡’. For a modulus n two numbers a and b are said 
to be congruent if: 
a mod n = b mod n. i.e.
a ≡ b (mod n) if, a mod n = b mod n
For example consider the modulus 7 i.e. n = 7
Then the numbers 2, 9, 16, 23 etc are congruent to each other, 
since
(2 mod 7) = (9 mod 7) = (16 mod 7) = (23 mod 7) etc

B. Properties of Modular Arithmetic
P1. 	 a≡b mod n implies a–b=k*n, where k is an integer
P2. 	  mod n + b mod n ≡ a+b (mod n), also true for other operators 

‘-’, ‘*’and ‘/’
P3. 	 a+b≡b+a (mod n) , also true for other operators ‘-’, ‘*’and ‘/’
P4. 	 a≡a mod n
P5. 	 a≡b mod n implies b≡a mod n
P6. 	 Fermat’s little theorem, if M and p are coprime then
	 Mp-1≡1(mod p)
P7. 	 if p and q are coprime and also if a≡b(mod p) and a≡b(mod 

q) then a≡b(mod pq)

VII. Algorithms
This section discusses a few public key algorithms and will 
also gives an explanation on how these algorithms work. The 
algorithms covered in this section are:
• Key Agreement Algorithms – RSA, DH, ECDH

• Encryption Algorithms – RSA
• Signature Algorithms – RSA, DSA, ECDSA

A. Rivest, Shamir, Adleman Public-Key Encryption - RSA
RSA is a public key algorithm that is used for Encryption, 
Signature and Key Agreement. RSA typically uses keys of size 
1024 to 2048. The RSA standard is specified RFC 3447, RSA 
Cryptography Specifications Version 2.1[3]. Overviews of RSA 
algorithms are given below.

1. RSA Encryption

(i) Parameter Generation
R1.	 Select two prime numbers p and q.
R2. 	Find n=p*q, Where n is the modulus that is made public. 

The length of n is considered as the RSA key length.
R3. 	Choose a random number ‘e’ as a public key in the range 

0<e<(p-1)(q-1) such that gcd(e,(p-1)(q-1))=1.
R4. 	Find private key d such that ed≡1(mod (p-1)(q-1)).

(ii) Encryption
	 Consider the device A that needs to send a message to B 

securely.
R5. 	Let e be B’s public key. Since e is public, A has access to e.
R6. 	To encrypt the message M, represent the message as an 

integer in the range 0<M<n.
R7. 	Cipher text C = Memod n, where n is the modulus.

(iii) Decryption
R8.	 Let C be the cipher text received from A.
R9. 	Calculate Message M = Cdmod n, where d is B’s private key 

and n is the modulus.

2. RSA Key Agreement
Since public key cryptography involves mathematical operation on 
large numbers, these algorithms are considerably slow compared to 
the symmetric key algorithm. They are so slow that it is infeasible 
to encrypt large amount of data. Public key encryption algorithm 
such as RSA can be used to encrypt small data such as ‘keys’ 
used in private key algorithm. RSA is thus used as key agreement 
algorithm.

(i) Key Agreement Algorithm
For establishing shared secret between two device A and B
R10. 	 Generate a random number, key, at device A.
R11. 	 Encrypt key by RSA encryption algorithm using B’s 		

	 public key and pass the cipher text to B
R12. 	 At B decrypt the cipher text using B’s private key to 		

	 obtain the key.

3. RSA Signature
RSA Signature is similar to RSA encryption except that the private 
key is used for signing and public key is used for verification.

(i) Parameter Generation
The parameter generation process is same as that in RSA 
Encryption.

(ii) Signing
Consider the device A that needs to sign the data that it sends 
to B.
R13. 	 Let d be A’s private key
R14. 	 To sign a data M, represent the data as an integer in 		
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	 the range 0<M<n
R15. 	 Signature C = Md mod n

(iii) Verification
R16. 	 Let M be the message and C be the signature received 	

	 from A
R17. 	 Calculate M’=Ce mod n, where e is A’s public key. 		

	 Sincee is public, B has access to e
R18. 	 If M’=M, the signature is verified, else failed.

(iv) One-Way Function in RSA
Consider the key generation equation R4, 
ed≡1(mod(p-1)(q-1)) and n=p*q
Where e is the public key d is the private key. p and q are kept 
private but n is made public. Since e is public, anybody who 
has access to p and q could easily generate the private key d 
using the above equation R4. The security of RSA depends on the 
difficulty to factorize n to obtain the prime numbers p and q. n is 
easily obtained by multiplying p and q but the reverse operation 
of factorizing n to obtain prime numbers p and q is practically 
impossible if p and q are sufficiently large numbers.

(v) Mathematical Explanation for RSA
From parameter generation equation R4
ed ≡ 1 (mod (p-1)(q-1)).
From the encryption equation R7
Cipher text C=Me mod n
From the decryption equation R9
Message M=Cdmod n
Combining above two equations M = (Me mod n)d mod n, using 
equation HX1
M=Med mod n
Similarly by combining signature and verification equation R15 
and R17 we get
M=Med mod n
So to prove the correctness of RSA, it has to prove that
M= Med mod n, if
ed≡1(mod (p-1)(q-1))

From the above equation ed≡1(mod (p-1)(q-1)) and property P1 
it follows that
ed-1=K (p-1)(q-1) , which can also be written as
ed-1=k (p-1), and ---- [RX1]
ed-1=k’(q-1) ---- [RX2]
Where K, k and k’ are positive integers
Since any integer is congruent to itself it can be written as
Med ≡Med (mod p). i.e.
Med ≡Med-1 *M(mod p),
Using equation RX1 the above equation can be written as
Med ≡ Mk(p-1) *M (mod p), ---- [RX3]
Since p is prime, any integer M can either be a co-prime with p 
or a multiple of p.

Case 1: If M and p are coprime, then from Fermat’s little 
theorem
MP-1≡ 1(mod p), or
Mk(p-1) ≡ 1K(mod p), i.e.
Mk(p-1) ≡ 1 (mod p) ---- [RX4]
From equations RX3 and RX4
Med ≡ M (mod p)

Case 2: If M is a multiple of p, then Med will also be a multiple 
of p, i.e.

M mod p=0, also Med mod p = 0, thus from congruence 
relation,
Med ≡M (mod p)
Similarly using RX2 it can be proved that Med ≡M (mod p) for 
above two cases.
Since p and q are prime numbers they are coprime to each other. 
Therefore by using property P7 the above two equations can be 
combined as
Med ≡M (mod p*q), by property P5
M≡ Med (mod p*q)
Since M is chosen in the range 0 and (p*q–1)
M= Med mod p*q, i.e. M = Med mod n

B. Diffie-Hellman Key Agreement - DH
Diffie-Hellman is a key agreement algorithm that helps two 
devices to agree on a shared secret between them with out the 
need to exchange any secret/private information. The DH standard 
is specified RFC 2631[4]. An overview of the algorithm is given 
below.

1. Key Agreement Algorithm
For establishing shared secret between two devices A and B, both 
devices agree on public constants p and g. Where p is a prime 
number and g is the generator less than p.

D1.	 Let a and b be the private keys of the devices A and B 
respectively, Private keys are random number less than p.

D2.	 Let gamod p and gbmod p be the public keys of devices A 
and B respectively

D3.	 A and B exchanged their public keys.
D4.	 The end A computes (gbmod p)a mod p that is
	 equal to gbamod p.
D5.	 The end B computes (gamod p)b mod p that is
	 equal to gabmod p.
D6.	 Since K = gbamod p=gabmod p, shared secret = K.

(i) Mathematical Explanation
From the properties of modular arithmetic P2
a mod n * b mod n = a * b (mod n)
Which can be written as
(a1 mod n)*(a2 mod n)*… *(ak mod n) = a1 * a2 * …* ak (mod n) ,
if ai=a, where i = 1, 2, 3… k
(a mod n)K = akmod n ,therefore ---- [HX1]
(gamod p)bmod p = gabmod p and
(gbmod p)amod p = gbamod p
For all integers gab=gba

Therefore shared secret K= gab mod p= gba mod p
Since it is practically impossible to find the private key a or b from 
the public key gamod p or gb mod p, it is not possible to obtain 
the shared secret K for a third party.

(ii) One-Way Function
For device A, Let a be the private key and x = gamod p is the 
public key,
Here x = gamod p is one-way function. The public key x is obtained 
easily in the forward operation, but finding ‘a’ given x, g and p 
is the reverse operation and takes exponentially longer time and 
is practically impossible. This is known as discrete logarithm 
problem [11].
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(iii) Elliptic Curve Diffie Hellman – ECDH
ECDH, a variant of DH, is a key agreement algorithm. For 
generating a shared secret between A and B using ECDH, both 
have to agree up on Elliptic Curve domain parameters [17].	
An overview of ECDH is given below.

(iv) Key Agreement Algorithm
For establishing shared secret between two device A and B
E1.	 Let dA and dB be the private key of device A and B respectively, 

Private keys are random number less than n, where n is a 
domain parameter.

E2.	 Let QA = dA*G and QB = dB*G be the public key of device A 
and B respectively, G is a domain parameter

E3.	 A and B exchanged their public keys
E4.	 The end A computes K = (xK, yK) = dA*QB
E5.	 The end B computes L = (xL, yL) = dB*QA
E6.	 Since K=L, shared secret is chosen as xK

(v) Mathematical Explanation
To prove the agreed shared secret K and L at both devices A and 
B are the same From E2, E4 and E5
K = dA*QB = dA*(dB*G) = (dB*dA)*G = dB*(dA*G) = dB*QA 
= L
Hence K = L, therefore xK = xL
Since it is practically impossible to find the private key dA or 
dB from the public key QA or QB, it’s not possible to obtain the 
shared secret for a third party.

D. Elliptic Curve Digital Signature Algorithm - ECDSA
For sending a signed message from A to B, both have to agree up 
on Elliptic Curve domain parameters. Sender A have a key pair 
consisting of a private key dA (a randomly selected integer less 
than n, where n is the order of the curve, an elliptic curve domain 
parameter) and a public key QA = dA*G (G is the generator point, 
an elliptic curve domain parameter)[18].  An overview of ECDSA 
process is defined below.

Signing
Consider the device A that signs the data M that it sends to B.
E7.	 Let dA be A’s private key
E8.	 Calculate m = HASH (M), where HASH is a hash function, 

such as SHA-1
E9.	 Select a random integer k such that 0<k<n
E10.	Calculate r = x1 mod n, where (x1, y1) = k*G
E11.	Calculate s = k − 1(m + dA*r) mod n
E12.	The signature is the pair (r, s)

Verification
E13.	Let M be the message and (r, s) be the signature received 

from A
E14.	Let QA be A’s public key. Since QA is public, B has access to 

it.
E15.	Calculate m = HASH (M)
E16.	Calculate w = s −1 mod n
E17.	Calculate u1 = m*w mod n and u2 = r*w mod n
E18.	Calculate (x1, y1) = u1*G + u2*QA
E19.	The signature is valid if x1 = r mod n, invalid otherwise

Mathematical Explanation
From the verification equation E19, the signature is valid if x1=r 
mod n ---- [EX1]
But from E18, x1 is the x-coordinate of equation u1*G+u2*QA
From E10 r is the x-coordinate of equation k*G

Thus to prove equation EX1, It has to prove that
u1*G+u2*QA = k*G
Substituting the value of u1 and u2 from E17 the first part of the 
above equation
u1*G+u2*QA = (m*w mod n)*G + (r*w mod n)*QA
But QA=dA*G, therefore
u1*G+u2*QA = (m*w mod n)*G + (r*w*dA mod n)*G, i.e.
u1*G+u2*QA = (w*(m+r*dA) mod n)*G
But from E16, w=s-1mod n, i.e s-1≡w mod n therefore
u1*G+u2*QA = (S-1*(m+r*dA) mod n)*G ----- [EX2]
but from equation E11
s=K-1(m+dAr) mod n, i.e. k≡s-1(m+dAr) mod n
Substituting k in EX2
u1*G + u2*QA = k*G
Therefore x1=r mod n

E. Digital Signature Algorithm - DSA
DSA is a public key algorithm that is used for Digital Signature. 
The DSA standard is specified FIPS 186-2, Digital Signature 
Standard [2]. An overview of the algorithm is given below.

(i) Parameter Generation
S1.	 Choose a 160-bit prime q.
S2.	 For an integer z, choose an L-bit prime p, such that p=qz+1, 

512≤ L ≤ 1024, and L is divisible by 64.
S3.	 Choose h, where 1<h<p-1 such that g=hz mod p>1.
S4.	 Choose a random number x, where 0<x<q.
S5.	 Calculate y=gx mod p.
S6.	 Public key is (p, q, g, y). Private key is x.

(ii) Signing
Consider the device A that sign the data M that it sends to B.
S7.	 Let x be A’s private key and (p, q, g, y) be A’s public key.
S8.	 Generate a random per-message value k, where 0<k<q.
S9.	 Calculate r = (gKmod p) mod q.
S10.	Calculate s = (K-1(M+x*r))mod q, where M is the hash SHA1 

of the message
S11.	The signature is (r, s).

(iii) Verification
S12.	Let M be the message and (r, s) be the signature received 

from A
S13.	Let (p, q, g, y) be A’s public key. Since (p, q, g, y) is public, 

B has access to it.
S14.	Calculate w = s-1 mod q.
S15.	Calculate u1 = (M*w) mod q, where M is the hash SHA1 of 

the message.
S16.	Calculate u2 = (r*w) mod q.
S17.	Calculate v = ((gu1*yu2) mod p) mod q.
S18.	The signature is valid if v=r, invalid otherwise.

(iv) Mathematical Explanation
From S18, Signature is valid if v=r, to prove the correctness of the 
algorithm it has to prove that v = r, if signature is valid.
Form S17, v = ((gu1* yu2) mod p) mod q.
But from S5, y=gx mod p, i.e y≡gx mod p, i.e. using equation 
HX1, yu2≡gx*u2 mod p
Therefore
v = ((gu1* gx*u2) mod p) mod q. ---- [DX1]
But from S16, gx.u2= gx*(r*w mod q) = g(x mod q)*(r*w mod q)

From P2 (x mod q)*(r*w mod q) ≡ (x*r*w) mod q
Using P1 (x mod q)*(r*w mod q) = (x*r*w) mod q + k*q
Where k is an integer, Therefore
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gx.u2=g(x*r*w) mod q + k*q, i.e.
gx.u2=(g(x*r*w) mod q) *(gk*q) ---- [DX2]
From S3, g = hz mod p,
Using HX1 and S2, gq≡hqz≡hp-1 (mod p)
By P6, Fermat’s little theorem hp-1≡1 (mod p), i.e. gq≡1 (mod p)
Substituting the value of gq≡1 (mod p) in DX2
gx.u2=(g(x*r*w) mod q) ---- [DX3]
But from S15, gu1= g(M*w mod q) ---- [DX4]
Substituting DX3 and DX4 in DX1
v=((gwM mod q+ xrw mod q ) mod p) mod q. i.e.
v=((gw (M+xr)mod q ) mod p) mod q. ------ [DX5]
From S10, in signature algorithm
s=(k-1(M+x*r))mod q i.e.
k≡s-1 (M+x*w)mod q ----- [DX6]
But from S14, w=s -1 mod q i.e.
s-1≡w mod q
Therefore equation DX6 can be written as
k≡w(M+x*w)mod q
Since k<q, k=w(M+x*w)mod q ----- [DX7]
Combining DX5 and DX7 and using S9
V=((gk)mod p)mod q=r. i.e. v=r

(v) One-Way function in DSA
Consider the equation S5, y=gx mod p, where x is the private key 
but y, g and p are public. Calculating y from g, x and p is a forward 
operation but obtaining x from the given y, g and p is the reverse 
operation and hence finding x is impossible for large numbers. 
This is known as discrete logarithm problem [11].

F. Elliptic Curve Cryptography – ECC
Elliptic curve cryptography (ECC) is relatively new technology 
compared to other public key cryptography such as RSA. Elliptic 
key operates on smaller key size. A 160-bit key in ECC is considered 
to be as secured as a 1024 bit key in RSA. ECC operates on the 
points in the elliptic curve y2=x3+ax+b, where 4a3+27b2≠0. The 
above equation of elliptic curve is in real coordinate. To make 
elliptic curve operation efficient and accurate the elliptic curve 
can be defined in finite fields. Elliptic curve in two finite fields, 
prime field and binary field, are defined by standard. In prime 
field operation the elliptic curve equation is modified as y2mod 
p=x3+ax+b mod p, where 4a3+27b2 mod p≠0. The ECC standards 
are specified in SEC, Standards for Efficient Cryptography. [5]

1. Domain Parameters
There are certain public constants that are shared between parties 
involved in secured and trusted ECC communication. This includes 
curve parameter a, b, a generator point G in the chosen curve, the 
modulus p, order of the curve n and the cofactor h. There are 
several standard domain parameters defined by SEC, Standards 
for Efficient Cryptography [6].

2. Point Multiplication
Point multiplication is the central operation in ECC. In point 
multiplication a point P on the elliptic curve is multiplied with a 
scalar k using elliptic curve equation to obtain another point Q 
on the same elliptic curve.
i.e. k*P=Q
Point multiplication is achieved by two basic elliptic curve 
operations
• Point addition: adding two points J and K using elliptic curve 
equation to obtain another point L i.e., L = J + K.
• Point doubling: adding a point J to itself using elliptic curve 
equation to obtain another point L i.e. L = 2J.

Here is a simple example of point multiplication.
Let P be a point on an elliptic curve. Let k be a scalar that is 
multiplied with the point P to obtain another point Q on the curve. 
i.e. to find Q = k*P.
If k = 23 then k*P = 23*P = 2(2(2(2P) + P) + P) + P.
In the ECC explanations given below upper case letter indicates 
a point in the elliptic curve and the lower case letter indicates a 
scalar

3. One Way Function in ECC
The security of ECC depends on the difficulty of Elliptic Curve 
Discrete Logarithm Problem. Let P and Q be two points on an 
elliptic curve such that k*P = Q, where k is a scalar. Q can be easily 
obtained from P and k but given P and Q, it is computationally 
infeasible to obtain k, if k is sufficiently large. k is the discrete 
logarithm of Q to the base P.

VIII. Conclusion
Public key cryptography is an innovation and is an unavoidable 
part of almost all security protocol and application. Being able 
to negotiate a shared secret between two devices online with out 
the need of any exchange of secret data created a breakthrough 
in secure network/internet communication. Though theoretically 
it is possible to find the shared secret from the available public 
information, it will take exponentially longer time making it 
practically impossible. It is the belief in age-old mathematics, that 
finding an easy method for reverse process of one-way function 
is unlikely, keeps the public key cryptography going.
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