
Abstract
This paper presents NALASS, a novel software tool that attempts
to automate a large part of the Requirements Engineering (RE)
process. The tool is based on a methodology that utilizes elements
of natural language syntax and semantics to formalize activities
of requirements discovery, analysis and documentation. NALASS
automates the creation of specific question sets for the elicitation
stage, the organisation and classification of requirements for
the analysis stage, with the use of predefined patterns, and the
generation of diagrammatic notations, such as object related data
flow diagrams and class diagrams, which are presented in this
paper.

Keywords
Requirements Engineering tool; automated RE; natural language
RE

I. Introduction
Recent studies show that the least understood parts of systems’
development are the stages of requirements discovery, analysis,
and specification (e.g. The Standish group [1]). The problem
observed is that there is an enormous gap between the clients’
needs and the software engineers’ understanding of the clients’
needs [2]. Clients often speak with vague sentences and/or cannot
express their functional needs or, even worse, they do not know
what these needs really are. This problem is amplified further
when the analyst does not provide the right questions as he/she
essentially does not know precisely what to ask. Our standpoint
is that if you know what to write, then you know what to ask.
Therefore, if the analysts know, in advance, specifically what
types of functions, data and constraints (Requirements Analysis
- RA) they should search for and write down, then they will be
able to ask specific questions (Requirements Discovery - RD)
regarding that particular information. A second priority of
engineering the requirements is to formalise the way the analysts
write this information (Requirements Specification - RS) - that is,
to organize it, apply correct syntax, use proper diagrammatical
notation, etc. Similarly, the way the RD questions are written
is part of this (second) priority. Conclusively, we claim that
building the questions for RD, based on RA (mainly) and RS, is
a reliable way to derive the right answers/requirements from the
users. Such a methodology that provides specific steps in advance
and, more importantly, a formalized and understandable way to
engineer requirements, is proposed by Georgiades and Andreou
[3], contrary to other approaches that try to elicit requirements
from existing documents or by using a general template such as
the IEEE SRS document template [4]. The NLSSRE (Natural
Language Syntax and Semantics RE) methodology utilizes natural
language (NL) syntactic and semantic elements, such as subject,
verbs, nouns, genitive case, adjectives, and adverbs to: (i) identify
and formalize adequately the various types of data and functions
of an information system (IS), as well as their relations, because
language, by its nature, is the most powerful medium of expression;

(ii) provide a common terminology and eliminate redundancies
in specifying names of functions, data and constraints; (iii) give
requirements a NL-like description which is very understandable
and useful as a communication medium between users, analysts and
programmers of the software system. To reduce the time required
for the manual application of the NLSSRE methodology, and also
to provide a friendly graphical environment for the Information
Systems (IS) analyst, a software tool is required. Therefore, we
introduce NALASS (Natural Language Syntax and Semantics),
a supporting software tool that automates all the stages of the
NLSSRE methodology, including RD, RA and RS. For the RD
stage, specific sets of questions are automatically created based
on the specific predefined types of data attributes and patterns of
formalized sentences that are given in advance; for the RA stage,
the requirements are automatically organised and classified based
on the same types of data attributes and patterns; and for the RS
stage, the tool can automatically generate Object Related Data
Flow Diagrams (ORDFDs – defined later), Class Diagrams, Use
case specifications and diagrams, and the Software Requirements
Specification (SRS) Document. The generation of the first two
types of diagrams is discussed in this paper. The rest of the paper
is organized as follows: Section II examines relevant literature
on RE tools and describes how NALASS differs from similar
propositions. Section III provides a summary of the NLSSRE
methodology and its application within the tool, while section
IV offers a detailed description of the tool. Both sections provide
examples of using NALASS in a real setting. Finally, section
V provides some conclusions and recommendations for future
work.

II. Related Work
Current software tools, both in general and in the context of
Natural Language Requirements Engineering (NLRE), are
mainly limited to document parsers that can be used in various
activities such as traceability, verification and prioritization of
requirements, or even automated extraction of requirements from
NL requirements documents. Abstfinder [2] is based on the use of
pattern matching techniques to extract abstractions (stakeholders,
roles, tasks, domain objects, etc.) The frequency with which the
abstractions occur within the text is taken as an indication of the
abstractions’ relevance. Fabbrini et al. [5] propose an automatic
evaluation method called Quality Analyzer of Requirements
Specification (QuARS) to evaluate quality in software requirements
specification. This work developed a tool that parses sentential
requirements written in Natural Language (NL) to detect potential
sources of errors. COLOR-X [6] and Circe [7] parse a set of
structured requirements in natural language to generate specific
models (ER, DFD, OO design, etc.) The common characteristic of
these and other related parsing tools is that they are mostly used
and applied to pre-existing documents with disorganized text,
redundancies and ambiguities. As a result, the retrieval approach is
not particularly reliable, as explained earlier in this section. Other
tools, such as the one reported by Kassel and Malloy [8], are not

A Novel Software Tool for Supporting and Automating
 the Requirements Engineering Process with the

use of Natural Language
1Marinos G. Georgiades, 2Andreas S. Andreou

1Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus
2Dept. of Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus

  International Journal of Computer Science and Technology  591

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

parsers and offer the user the capability to enter the requirements
from scratch, but they also lack specific types of questions (for
RD) linked to the identification of data and functions of an IS.
In contrast, NALASS implements the NLSSRE methodology
and provides specific predefined requirement patterns, specific
categories of data, functional conditions and business rules,
from which automatically derives specific sets of questions. The
answers to these questions feed the analysis and specification
stages. Hence, the way the requirements are elicited is clearly
connected to the analysis and specification of requirements. In the
current literature, this link does not exist, and that is why current
approaches and tools often result to inadequate requirements and
diagrams. Additionally, NALASS may be conceived as a complete
toolset that can generate ORDFDs, Class Diagrams, Use Case
specifications and diagrams, as well as a well-structured NL-SRS
document that covers the essential parts outlined by the IEEE
SRS template [4].

III. Methodology Overview
The NLSSRE methodology introduced by Georgiades and
Andreou [3] provides formalization of the major activities of RE
including Requirements Discovery, Analysis and Specification,
so that the analyst will know in advance, through a step-by-step
approach, what questions to ask, in what specific way to analyse
the answers to the questions, and how to write them in a specific
way. The application domain of the methodology is an IS (e.g.
Hospital IS or Library IS) that needs to produce, change or present
electronic information about documents or other physical entities
(e.g., student, book, etc.) The first step of NLSSRE guides the
analyst to identify specific discrete data entities, called Information
Objects (IO). An Information Object (IO) is defined as a digital
representation of a tangible or intangible entity—described by a set
of attributes—which the users need to manage through Creating,
Altering, Reading, and Erasing its instances, and be Notified
(CAREN) by the messages each instance (IOi1) can trigger. The next
step—which is central in utilizing the methodology—involves the
application of specific functions on every IO, as well as the written
specification, in the form of formalized sentences (Formalized
Sentential Requirements – FSRs), of the IO, its functions, the
involved business roles, and the functional conditions. NLSSRE
provides specific FSR patterns, based on which it guides the user to
derive specific questions to identify the business roles and possible
values of the functional conditions; the answers to these questions
assist in forming the complete FSRs. Writing the requirements
as formalized sentences does not only help to make expression
of requirements more disciplined, understandable and organized,
but also leads to the identification of entities (business roles and
functional conditions) that are involved during the application of a
function on an IO. Furthermore, such formalization makes easier
the transformation of requirements into diagrammatic notations
and specifications.
Fig. 2(a) shows the most basic FSR patterns, namely Create,
Alter, Read, and Erase, which are derived from the corresponding
CAREN (create, alter, read, erase, notify) functions. CAREN
functions are parts of each IO and they are decomposed to sub-
functions (at the system user’s level, not the programmer’s), as
depicted in fig.1.

Fig.1 : CAREN - A recommended set of functions and sub-
functions applied on an IO, and the notifications produced.

Create : Creation is the most significant function, since during
Creation the attributes of an IOi take their initial values which
are the basis for further processing by the remaining functions.
Creator is the entity that creates the IO, Accompaniment is the
entity that assists the Creator in the creation of the IO, Intended
Recipient is the entity for which the IO is created and which will
utilize the IO within the IS, and Notifiee is the entity that needs to
be notified for the creation of the IO (this entity will not use the
IO in any way that will cause any interaction within the system).
On the right of the symbol “::” the syntax of the Notification
function follows, which is triggered after the execution of the
function on the left.

Alter : During Alteration, the value of one or more of the attributes
of an IOi changes. A significant attribute that changes during
alteration is the attribute State. When the IO corresponds to a
procedure (e.g., examination) or event (e.g., appointment), the
State value may change from Start to Ongoing/ Pending to
Finished/ Completed or Cancelled, or even Expired or Archived;
when the IO is an inanimate physical object (e.g., book, drug)
then State may change from InStock to Sold/Lent, and when the
IO is an animate object State usually takes values according to the
IOs business role (e.g., Student IO State may be new, studying,
graduated, suspended, or Patient IO State may be ill, under
treatment, cured); and when the IO corresponds to a document
(usually in electronic form, e.g., prescription, voucher), State may
take values such as stored, archived, cancelled, edited/reviewed
or retrieved. The change from one state to another (e.g., from
Pending to Complete), for a particular IO, often derives a new
alteration function, such as Cancel,

Read : The meaning of this function may be conceived in two
ways: the first, which is the one that concerns requirements
analysis, is about what a user wants to read regarding a particular
IO per se or from its relations with other objects. It mainly concerns
the presentation (optical or acoustical) of notifications and forms
regarding the IO per se (e.g., Appointment form), or the presentation
of reports of the IO with related objects (e.g., report of a patient’s
monthly appointments). The second concept for Read concerns
the way the data will be presented, including drawings, graphics,
video, multimedia, etc.; the first meaning of this concept falls
in RE, but the detailed procedures of implementing methods of
presentation concerns the Design which is outside of the scope of
RE. Experiencer is the entity that experiences IO through viewing
it, listening to it, etc.

 592  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

Fig. 2 : The predefined questions (b) created automatically by the
FSRs patterns (a), and the resulting complete FSRs (d) created
automatically by the answers of the users (c), for the Prescription
IO – screenshots are taken from NALASS that automates and
supports the NLSSRE methodology.

Erase : Erasure of an IOi means that the IOi is permanently
deleted. All of its information about attributes and functions that
exist in the context of the IS is deleted.

Notify : At the user level, in a manual, paper-based IS, we
encounter the transmission function (from the linguistic verb of
transfer of possession), where data is sent from one entity to
another. For example, the Doctor gives the Prescription to the
Patient, and the Patient gives the Prescription to the Pharmacist.
In a computerized IS the transmission of prescription is replaced
by the Read function, since the IO (Prescription, in this case) is
already stored (after its creation or alteration) in the IS. Hence, the
Pharmacist can Read the Prescription IOi by simply retrieving it
from the database. However, in a computerized IS, transmission
exists at the messaging level, which we call Notification. In
particular, when an IOi is created or altered (or even read), then
a notification should be sent to the interested parties which are
classified into two groups the Intended Recipients (IR) who will
have to take an action within the IS as a consequence of the
creation or alteration of the IOi (e.g., a Pharmacist is the IR of a
Prescription IOi, because, after its creation, s/he will utilize it to
create a Drug IOi), and other entities who just need to be informed
about the creation or alteration of the IOi, called Notifiees (e.g.,
patient in the Prescription IOi example). Subsequently, based on
the syntax of each FSR pattern and the functional roles involved
in each pattern (e.g. Creator, Accompaniment), the tool derives
questions, the answers of which are used to feed the FSR patterns.
Then the complete FSRs are used by the tool with the attributes
for each IO, collected during the third step of the methodology, to
build diagrammatic notations, based on specific rules. This paper
focuses on the capability of the tool to generate (i) Object-Related
Data Flow Diagrams which are defined as data flow diagrams
whose functions are applied on information objects (Information
Objects). Thus ORDFDs consist of the CAREN functions; and (ii)
Class Diagrams. It has been illustrated that NLSSRE uses syntax

(IS elements of a requirement are written in the correct order in a
formalized sentence) and semantics (genitive case types, adjective
types, etc.) of NL to formalize the IS requirements, through the
stages of RD, RA and RS. Especially the use of predefined questions
guides users to provide specific answers without ambiguities,
vagueness and redundancies. Additionally the use of NL gives
expressiveness to the formalization of requirements and makes
them easily understood by the users, analysts and programmers.
There is a common terminology based on a consisted and common
language of writing, without ambiguities and redundancies, and,
furthermore, this controlled language is computer-processed and
translated automatically into diagrammatic notations, use case
descriptions and the SRS document, as already mentioned.

IV. The NALASS Tool
The tool consists of three main sections: Administration, Plan and
Execution. In the Administration section, the analyst can create/
add new types of IS elements, such as FSR patterns and data
attribute types that may apply to any project. In the Plan section,
the analyst builds the particular elements of a particular project,
including its IOs, the FSR patterns of each IO, IO attributes, and
questions for each IO. Finally, in the Execution section, the analyst
provides answers to the questions, the tool completes the FSRs
and attribute values, and it finally uses specific rules to transform
the complete FSRs and attributes to diagrammatic notations.
Below we illustrate, with examples, the Plan and Execute sections.
i. The first step for the analyst, in the Plan section, is to use a
particular guide, provided by NLSSRE, to identify and add the
Information Objects of the IS. The screen in fig.3 shows some
of the IOs of a Hospital Information System. Subsequently, for
each IO, the four main FSR patterns (fig. 1a – Create, Alter, Read,
Erase) are created automatically by NALASS. Fig.2a shows the
FSR patterns for the information objects Drug and Prescription.
The tool also provides other alteration functions, as mentioned
previously, such as Cancel, Complete, and Archive, and the analyst
can choose which ones to use depending on the category of the
IO. For each CAREN function of an FSR, the tool also provides
its sub-functions which are depicted in fig.1.

  International Journal of Computer Science and Technology  593

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

Fig.3 : Adding Information Objects

As the next step, the questions are created automatically by the
tool, as shown in fig. 2b, based on the different functional roles
(Creator, Accompaniment, etc.) of each FSR pattern, which need
to take a value. For example, the Creator of the Prescription needs
to take a value, and so we need to ask who the creator of the
prescription is. These questions will be submitted to the users of the
IS as illustrated in the next paragraph. It is worth noting here that
this formalization in providing specific questions that are linked to
the analysis and organisation of requirements is the difference from
other approaches which use formalism in NL RE. Such approaches
try to develop and formalize requirements that are already written
in existing documents. We consider them as being inefficient,
since requirements in such documents are often poorly written
and organized; sentences do not necessarily follow the correct
form of syntax, while there may exist redundant words, fuzzy and
complicated meanings, etc. As such, it is rather precarious and
difficult to apply linguistic rules on such documents.

II. In the ‘Execution’ section
The analyst submits the answers received from the users to the
form provided by NALASS (fig. 2c). The answers to the questions
feed the FSR patterns, as they are the values of the constituent
elements (e.g., of functional roles) of the patterns, and generate
the complete FSRs as shown in fig.2(d) (e.g. Creator takes the
value Doctor which is a business role).
Subsequently the FSRs and their constituent elements, as well as
the IO attributes, with the use of specific rules are transformed to
ORDFDs, Class diagrams, Use case specifications and diagrams,
and the SRS document. In this paper we focus on the transformation
to ORDFDS and class diagrams.

A. Transformation to ORDFDs
Within this transformation, the FSRs for each IO are grouped
under one comprehensive function with the heading Manage IO.
For example, for the Prescription and Drug IOs, the FSRs of
Prescription and Drug, as appear in fig. 2, will be grouped under
Manage Prescription and Manage Drug. The Manage functions
for each IO are the functions of the 1st level DFD (fig. 4), the

Create, Alter, Read, and Erase functions for each Manage IO are
the functions of the 2nd level DFD (fig. 5). Below we provide in
more detail the most basic rules of this transformation:
•	 The first level ORDFD will include all the Manage IO

functions fig.4. Functions are represented by a rectangle.
•	 The second level ORDFD will include all the 2nd level

functions (Create, Alter, Read, Erase) of each first level
function (Manage IO) as shown in fig.5.

•	 For the third level DFD, the second level functions are
decomposed to the CAREN sub-functions, according to
fig.1. For example, the 2nd level function Create Prescription
is decomposed to Enter Data (incorporates the Read and
Compare sub-functions) and Save (see fig.6). .

•	 The functional roles Creator, Accompaniment, Alterer,
Intended Recipient, Experiencer and Notifiee correspond
to actors (or business actors or business roles) of a traditional
DFD and are represented by a circle.

•	 For the functions Create, Alter and Erase, the business role
(s)/ actors (s) that appear on the left of the name of each
function, in its syntax, provide data input to the function,
hence an arrow from each of these actors goes to the relevant
function (e.g. from Doctor to Create Prescription - Fig. 5).

•	 For the Read function, in the 2nd level of decomposition,
the business role of Experiencer receives the IO in a special
format/layout for reading (viewing, listening, etc.). Hence
an arrow from the Read function goes to the Experiencer
actor (business role) in the ORDFD as shown in Fig. 5 (Read
Prescription – Pharmacist).

•	 The Create, Alter and Erase functions create a data flow from
the relevant function to the relevant datastore, because the
IO is changed and needs to be (re)stored; hence an arrow
goes from each function to the datastore (e.g. from Create
Prescription to Prescriptions).

•	 The Create, Alter and Erase functions create data flows from
the relevant datastore (which is created because of these
functions) to the relevant function, because the function needs
to check the IO before altering it; hence an arrow goes from
the datastore to each function (e.g. from Prescriptions to
Create Prescription).

•	 The Read function creates a data flow from the relevant
datastore to the Read function; hence an arrow goes from
the datastore to the function (e.g from Patients to Read
Prescription).

•	 The entities that appear on the right of Notifies in the syntax
of the Notification function receive an arrow (data flow)
from the relevant function which appears on the left of
the Notification function (e.g. from Create Prescription to
Doctor, Nurse, Pharmacist, and Patient).

•	 The tool automatically defines the relation of each function
at the highest level (Manage IO). In particular the link of one
high-level function to another is created, when the output
of one high-level function is an input to another high-level
function, e.g., the Manage Drug function uses the Prescription
IO which is an output of the Manage Prescription function.
In this way, in the ORDFD, the high-level function (in
this example Manage Drug) will retrieve the IO from the
datastore Prescriptions where the linked high-level function
(in this example Manage Prescription) stored it (fig. 4). This
procedure is done automatically by the use of the following
rule: The Intended Recipient of an IO needs to Read that
IO. Thus a link from the relevant datastore of that IO to the
Manage IO function of the new IO in which the Intended
Recipient is involved as its Creator or Alterer needs to take

 594  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

place. E.g. the Pharmacist is the Intended Recipient of the
Prescription as shown in the syntax of Create Prescription
(Fig. 2d), and the Pharmacist will Read the Prescription
in order to Manage Drug. Hence a link from Prescriptions
(datastore) to Manage Drug is created (Fig. 4).

B. Transformation to Class Diagrams
Specific rules are used to transform the FSRs and attributes of each
IO to class diagrams. Each IO is transformed to a Class, and its
CAREN functions become the methods of the class. Additionally,
each IO contains specific attributes according to its IO category
(business role, inanimate object, procedure, document, etc.). Some
attributes are compulsory and others are optional. Indicatively two
of the attribute categories provided by NLSSRE are the Primitive
attributes, which are related to the IO per se and usually refer
to its physical characteristics (e.g., for the Patient IO, primitive
attributes include temperature, height, mass) and the Peripheral
attributes that refer to other IOs related to the IO under study (e.g.,
for Patient, peripheral attributes include Doctor, Receptionist,
Disease) and usually appear in the FSR patterns of the IO (e.g.
(i) “Receptionist,Patient Create Registration”; (ii) “Doctor,Patient
Create Prescription”; (iii) “Doctor,Patient Diagnose Disease” –
in all these patterns, Patient is an accompaniment). Hence, once
information about the attributes of each IO is identified, this
information can be refined and codified to the exact attributes
of each IO. As an example, information about Doctor, which
constitutes one or more attributes of the IO Prescription, can be

refined and codified to the specific attributes of Doctor ID, Doctor
Signature, Doctor Name, and Doctor Surname. NALASS facilitates
this process by providing a grid including all the possible attribute
categories for each IO. For the peripheral attributes, NALASS
finds all the FSRs in which the IO under study is involved and
returns the other participants (e.g., business roles) of the mentioned
FSRs. Further rules regarding the relationships between classes
and cardinality are realized by NALASS, such as:
•	 An association relationship exists between the IO and each

business role—which actually constitutes an IO, too—in the
same FSR.

•	 There should be:
	 (i).	 A one-to-many association between Creator (e.g., Doctor

in the Create Prescription FSR) and IO (Prescription) (apart
from rare cases where there could be more than one creators
for the same IO)

	 (ii).	A one-to-many association between the client business
role (Patient – otherwise called external accompaniment role)
and the IO (Prescription)

•	 There could be a many-to-many association between
Creator (Doctor) and internal Accompaniment (e.g., Nurse
or Counselor).

Fig.7 shows the Prescription and Drug classes, with their
attributes (types) and relationship, as generated automatically
by NALASS.

Fig. 4 : First Level ORDFD created automatically by NALASS

  International Journal of Computer Science and Technology  595

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

Fig. 5 : 2nd level DFD created automatically by NALASS

Fig. 6 : Third Level ORDFD for the function Create rescription

 596  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

Fig.7 : General form of a Class diagram created automatically
by NALASS

V. Conclusions and Future Work
This paper has presented NALASS (Natural Language Syntax
and Semantics), a software tool that is intended to automate the
application of the NLSSRE methodology (Natural Language
Syntax and Semantics Requirements Engineering) as illustrated in
[3]. Like the methodology on which it is based, the tool can be used
through the entire Requirements Engineering process to automate
large parts of requirements discovery, analysis and specification.
NALASS provides a friendly graphical user environment for the
Information Systems (IS) analyst, and it reduces the time required
for the manual application of the NLSSRE methodology. For
the requirements discovery stage, specific sets of questions are
automatically created based on the specific predefined types of
data attributes and patterns of formalized sentential requirements
that are given in advance; for the requirements analysis stage, the
requirements are automatically organised and classified according
to the same types of data and patterns of formalized sentences; and
for the requirements specification stage, the tool can automatically
generate diagrammatic notations such as Object-Related Data
Flow Diagrams (ORDFDs) and Class Diagrams. Our work is
still in progress, so future considerations involve (i) expansion
of the tool features, such as the automatic generation of activity
diagrams, as well as the improvement of the tool in generating class
diagrams, use case diagrams and specifications, (ii) development
of a web version of the tool, since now is only available in a
desktop version.

References
[1]	 The Standish group, "The CHAOS report", Press release 23

April 2009 [Online] Available : http://www1.standishgroup.
com/newsroom/chaos_2009.php

[2]	 L. Goldin, D. Berry, “Abstfinder: A prototype natural
language text abstraction finder for use in requirement
elicitation,” Automated Software Engineering. Kluwer
Academic Publishers, Netherlands,1997, pp. 375–412.

[3]	 M. Georgiades, A. Andreou. 2010. “A Novel Methodology
to Formalize the Requirements Engineering Process with
the Use of Natural Language”, In Proceedings of the IADIS

Conference on Applied Computing (Timisoara, Romania,
October). IADIS Digital Library, pp. 11-18.

[4]	 IEEE Std 830-1998, "Recommended Practice for Software
Requirements Specifications", IEEE Xplore, 1998.

[5]	 F. Fabbrini, M. Fusani, S. Gnesi, G. Lami, “An Automatic
Quality Evaluation for Natural Language Requirements,”
Seventh International Workshop on Requirements
Engineering: Foundation for Software Quality, Interlaken,
Switzerland, 2001.

[6]	 F. M. Burg, "Linguistic Instruments in Requirements
Engineering", IOS Press, 1997.

[7]	 V. Ambriola, V. Gervasi, “Processing natural language
requirements,” Proc. ASE 1997, pp. 36-45.

[8]	 N. Kassel, B.A. Malloy, “An Approach to Automate
Requirements Elicitation and Specification”, Proc. of the
7th Int. Conf. on Software Engineering and Applications,
November 3-5, 2003, Marina del Rey, CA, USA, pages 544-
549.

[9]	 IBM Rational Rose. [Online] Available : http://www-306.
ibm.com/software/rational/

Marinos G. Georgiades obtained a BSc and a
Ph.D. in Computer Science from the University of
Cyprus, and an MSc in Information Management
from the University of Sheffield. His research
interests include Software Engineering and
more specifically Requirements Engineering
with emphasis on the use of Natural Language

for the formalization and automation of software
requirements elicitation, analysis and specification. He is the
recipient of the ISDA 2010 best student paper award.

Andreas S. Andreou studied Computer
Engineering and Informatics at the University
of Patras, Greece (Diploma, 1993, Ph.D.,
2000). Prior to joining the academia he worked
in the industry at the posts of Programmer-
Analyst, of Director of Requirements Analysis
and Development and of IT consultant in
Banking Systems. Currently he is an Associate
Professor at the Department of Electrical

Engineering / Computer Engineering and Informatics of the
Cyprus University of Technology. He also served as Software
Engineering and IT consultant in several major software projects
in Cyprus, including the Integrated Software System for the New
Nicosia General Hospital. His research interests include Software
Engineering, Web Engineering, Electronic and Mobile Commerce
and Intelligent Information Systems.

  International Journal of Computer Science and Technology  597

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

