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Abstract

Computing constrained shortest paths is fundamental to some
important network functions such as QoS routing, MPLS path
selection, ATM circuit routing, and traffic engineering. The
problem is to find the cheapest path that satisfies certain con-
straints. In particular, finding the cheapest delay-constrained
path is critical for real-time data flows such as voice/video calls.
Because it is NP-complete, much research has been designing
heuristic algorithms that solve the - approximation of the problem
with an adjustable accuracy. A common approach is to discretize
(i.e., scale and round) the link delay or link cost, which transforms
the original problem to a simpler one solvable in polynomial time.
The efficiency of the algorithms directly relates to the magnitude
of the errors introduced during discretization. In this paper, we
propose two techniques that reduce the discretization errors,
which allows faster algorithms to be designed. Reducing the
overhead of computing constrained shortest paths is practically
important for the successful design of a high-throughput QoS
router, which is limited at both processing power and memory
space. Our simulations show that the new algorithms reduce the
execution time by an order of magnitude on power-law topologies
with 1000 nodes. The reduction in memory space is similar.
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I. Introduction

MAIJOR obstacle against implementing distributed multimedia
applications (e.g., web broadcasting, video teleconferencing, and
remote diagnosis) is the difficulty of en- suring quality of service
(QoS) over the Internet. A fundamental problem that underlies
many important network functions such as QoS routing, MPLS
path selection, and traffic engineering, is to find the constrained
shortest path - the cheapest path that satisfies a set of constraints [ 1-
10]. For interactive real-time traffic, the delay-constrained least-
cost path has particular importance [11]. It is the cheapest path
whose end-to-end delay is bounded by the delay requirement of
atime-sensitive data flow. The additional bandwidth requirement,
if there is one, can be easily handled by a pre-processing step that
prunes the links without the required bandwidth from the graph.
The algorithms for computing the constrained shortest paths can
be used in many different circumstances, for instance, laying
out virtual circuits in ATM networks, establishing wave- length-
switching paths in fiber-optics networks, constructing label-
switching paths in MPLS based on the QoS requirements in the
service contracts, or applying together with RSVP. There are two
schemes of implementing the QoS routing algorithms on routers.
The first scheme is to implement them as on-line algorithms that
process the routing requests as they arrive. In practice, on-line
algorithms are not always desired. When the request arrival rate is
high (major gateways may receive thousands or tens of thousands
of requests every second), even the time complexity of Dijkstra’s
algorithm will overwhelm the router if it is executed on a per-
request basis.1 To solve this problem, the second scheme is to
extend a link-state pro- tocol (e.g., OSPF) and periodically pre-
compute the cheapest delay-constrained paths for all destinations,
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for instance, for voice traffic with an end-to-end delay requirement
of 100 ms. The computed paths are cached for the duration before
the next computation. This approach provides support for both
constrained unicast and constrained multicast. The computation
load on a router is independent of the request arrival rate. More-
over, many algorithms, including those we will propose shortly,
have the same time complexity for computing constrained
shortest paths to all destinations or to a single destination. This
paper studies the second scheme.

A path that satisfies the delay requirement is called a feasible
path. Finding the cheapest (least-cost) feasible path is NP-com-
plete. There has been considerable work in designing heuristic
solutions for this problem. Xue [12] and Juttner et al. [13] used
the Lagrange relaxation method to approximate the delay-con-
strained least-cost routing problem. However, there is no theo-
retical bound on how large the cost of the found path can be.
Korkmaz and Krunz used a nonlinear target function to approx-
imate the multi-constrained least-cost path problem [14]. It was
proved that the path that minimizes the target function satis- fies
one constraint and the other constraints multiplied by, where isa
predefined constant and is the number of con- straints. However,
no known algorithm can find such a path in polynomial time.
Ref. [14] proposed a heuristic algorithm, which has the same
time complexity as Dijkstra’s algorithm. It does not provide a
theoretical bound on the property of the re- turned path, nor provide
conditional guarantee in finding a fea- sible path when one exists.
In addition, because the construction of the algorithm ties to a
particular destination, it is not suitable for computing constrained
paths from one source to all destina- tions. For this task, it is
slower than the algorithms proposed in this paper by two orders
of magnitude based on our simulations. Another thread of research
in this area is to design polyno- mial time algorithms that solves
the NP-complete problem with

an accuracy that 1s theoretically bounded. Let v amd « be the
number of links and the number of nodes in the network, e
spectively, Civen & smoll constant =, Hossin'®s algorithm [15]
has & time complesity of £Fma) o lnel DB SLE) |, whene
LUTB and LB are the costs of the fastest path and the cheapest path
from the source node to the destination node, respectively, The
algorithm finds a feasible path if there exists one. The cost of the
path is within the cost of the cheapest feasible path multiplied
by (1 — ). Lorenz and Raz improved the fime complexity to
o1 [16]. Chien and Nzhrstedt solved a similars
problem in time (3 (w4 Log v ), Where « in order
o achieve the --approximation [17], Goel er al’s algorithm
[18] has the best-knoam complexity of O s log s i L7 20),
whiere 7. is the ||,-:r|f_[|| ﬂll_.-p:.,' of the |q,:|||g,¢sl [_li-|'|h i the network.
Howvever, its approximation model is different. Tt computes a
path whoss cost is no more than the cost of the cheapest fea-
gibile path, while the delay of the path is within (1 -j of the
delay reguirement. The algorithms proposcd in this paper follow
Goel's model,

[l "rl.'.l_l_. = L 114

0
Mgy

One common technique of the above algorithms [15, 17, 18] is to
discretize the link delay (or link cost). Due to the dis- cretization, the
possible number of different delay values (or cost values) for a path
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isreduced, which makes the problem solvable in polynomial time.
The effectiveness of this technique depends on how much error is
introduced during the discretization. The existing discretization
approaches have either positive discretization error for every link
or negative error for every link. Therefore, the discretization error
on a path is statistically proportional to the path length as the
errors on the links along the path add up. In order to bound the
maximum error, the dis- cretization has to be done at a fine level,
which leads to high execution time of the algorithms.

Given the limited resources and ever-increasing tasks of the
routers, it is practically important to improve the efficiency of
the network functions. While QoS routing is expensive due to
its nonlinear nature, it has particular significance to reduce the
router’s overhead in computing the constrained shortest paths. In
this paper, we propose two techniques, randomized discretization
and path delay discretization, which reduce the discretization
errors and allow faster algorithms to be designed. The randomized
discretization cancels out the link errors along a path. The larger
the topology, the greater the error reduction. The path delay
discretization works on the path delays instead of the individual
link delays, which eliminates the problem of error accumulation.
Based on these techniques, we design fast algorithms to solve the
approximation of the constrained shortestpath problem. We prove
the correctness and complexities of the algorithms. Although the
new algorithms have the same worstcase complexity as Goel et
al.’s algorithm [18], we believe (and our simulations suggest) that
they run much faster on the average case. The simulations show
that the new algorithms are faster than Goel et al.’s algorithm by
an order of magnitude on powerlaw topologies with 1000 nodes.
The rest of the paper is organized as follows. Section II reviews
the existing approaches. Section III describes the randomized
discretization, and Section IV describes the path delay
discretization. Sections V and VI provide analytical and simulation
results, respectively. Section VII draws the conclusion.

Il. Problem Definition and Existing Discretization
Approaches

Consider a network ¢5{1, /1%, where 17 is a set of +. nodes and
£ is a set of m directed links connecting the nodes. The delay
and the cost of a link (. ») =« j are denoted as ¢{n. »] and
[, i), respectively. The delay and the cost of a path P are de-
noted as i ¢ and o 2, respectively. of 1 Xy ue gl )
and i F'] = M. o peing vl Let i F) be the length (number
of hops) of #*, and L. be the length of the longest path in the
network,

Given a delay requirement », /° is called a feasible parh if
d(F) < r. Given a source node =, let V. be the set of nodes
to which there exist feasible paths from « For any 1 = 17, the
cheapest feasible path . . from s to ¢ is defined as

i 1<y

e e = m { e FALE D S e path B from s o}

604  InTerRNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

ISSN : 2229-4333(Print) | ISSN : 0976-8491(0nline)

The delgy-constrained least-cost routing problem (DCLC) 15
to find the cheapest feasible paths from = to all nodes in ¥,
which iz MP-complete [19]. However, if the link delays are all
integers and the delay requirement is boonded by an indeger
&, the PTI_I-I:I-It'IrI can be salved in fme o0 e 4 0 ko :z:l_.i.:,', by
Joksch™s dynamic programming algorithm [20] or the exiendad
Dijkstra’s algocithm [17].

Joksch's algonithm iz descnbed s lollows, Ye 47 1 &
[ih,, 5, et v, 7| be a variable storing the cost of the cheapest
path ¥ from = to » with & 7 < 4 and =) 7| storing the last
link of the path, Initally, afe, ¢ = 20, % & o mmd wlay 2 =10,
=[.4] = NIL. Assuming that all nk delays are positive, the
dynamic programming is given below,

arfer ] = aiias {efa, L] # s £

| a2 he gy oy & B iEt] = E]

Mow suppose the link delays are allowed to be zero, We need
to add one more step, Tetds, be the subgraph consisting of all
Fero-delay links. Foreach £ = [ 4, immediately afier Joksch's
algorithm calculates wlw, i %¥e = 17, Dijksta’s algorithm is
excouted on £, to improve wis. i on zero-delay paths [18].

The above polynomially sodvable special case with integer
deloys poinis out a beuristic solution for the generyl NP-com-
plete problem with arbitrary delays, The ides 15 to discretize
{scale and then round) arbitrary link delays to inlegers [15],
[17], [18], [21]). There are two existing discrebzation ap-
Pn_u_u_'l'lm__ rriricd L0 r_'rﬂ:'rag [|T] urld ki I ﬂ:.h:.hr [lﬂ]. “ull'l
approsches map the delay regquirement + 1o selected nteger
A, and then discretize the link delays as follows,

Rownd to ceiling (RTC): For every link (), the delay
value is divided by »/A IT the resull 15 not an inkeger, it s
rounded o the nearest larger integer.

ifn, 1)
Delily

e

o7 e, 12 (1]

Round to floor (RTF): For every link i1, i}, the delay value
is divided by + /& I[ the result is not an integer, it is rounded to
the nearest smaller inleger.

. F", L _1-'|
i, v [” ik JaJ @)

4

The value of .} controls the rounding error (up to r/2A) in-
troduced by discretization. With a larger 4, the rounding error
accounts for a smaller portion of the link delay. When A is large
enough and thus the discretization error is small enough, we can
approximate the DCLC problem by a new problem with integer
delays after discretization. The solution to the new problem will
serve as the solution of the original problem. However the com-
putation overhead is directly related to A.

After discretizing the link delays by RTC or RTF, either
Joksch’s algorithm or the extended Dijkstra’s algorithm can
solve the =-approximation of DCLC, which is to find a path ¥
for every node ! = v, such that

ST e
r_:I_‘__P;I "'_:- i-'[Pz-Aj
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where - is usmull percentage. The deluy of the puth is allowed 1o
syreed] The redumemenl I':. 0 pervenire ol no e i = , whole
the st shoodd e o moke than that of the cheapest feasib
math £% ;. Liing KI1E the delay scaling algonihm (LESAD pro
posed by Goel ef of, achieves the best lime coanpledny o0 [
n e md FA0 ) mnong il existing algoritons 18]
e chacrenZatno error o 4 ik fy iy 15 dhelpmext as
eI i w, o Fl- — (3]
| L I, el |-, - k
. - 5
% pr) ofi . el '\--'-lf i4)
1T elisire g ek error of # [t AR HIN A
AL -:'-_. BT (5]
.
AP "‘l M, w (&
v ain
Hy we knosy Bl 45 e, ey < s true for ull links P40
Therefore, A5 &) < 0 s ue for all paths 02 Similarly, by (4)
Y o, wj > 0 smd A 2 0 ore alWEs e

lil. Randomized Discretization

RTC creates negative rounding errors on links. The error ac-
cumulates along a path. The accumulated error is proportional to
the path length. The larger the topology, the longer a path, the
larger the accumulated error. The same thing is true for RTF,
which has positive rounding errors on links. In order to achieve
«-approximation, the accumulated error on a path cannot be too
large. To reduce the error on a path, the existing algorithms
based on RTC or RTF must reduce the discretization errors on
the links by using a large & value. Given the time complexity

(v | nlognlAl the computation time is increased in pro-
portion 10 A

The insight is that if we can reduce the error introduced by
discretization without using a larger ., we can improve the per-
formance of the algorithm. We develop two new techniques. The
first one is called randomized discretization. It rounds to ceiling
or to floor according to certain probabilitics. The idea is for some
links to have positive errors and some links to have negative er-
rors. Positive errors and negative errors cancel out one another
along a path in such a way that the accumulated error is mini-
mized statistically. We will prove that, when the following dis-
cretization approach is used, the mean of the accumulated error
on a path 7 is zero and the standard deviation is bounded by
" VWEA In compariscn, the mean of the accumulated error
is —{v 223 #) for RTC and {23} #1 for RTF.

Round randomly (RR): For every link i 4. #], the delay value
is divided by r/A If the result is not an integer, it is rounded
to the nearest smaller integer or to the nearest larger integer
randomly such that the mean error is zero.

[_*._'}, with prob, y,_ =2l lis_.;..J

TUTRIEE SR _ -
X [%-’I A with prob = | —in

) @)
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The discretized delay of a path £ is

= Z vl &)

Vil JEF

The discretization error of a link {. '] 18

ATl dlwel ol -z."]lj; ©)

and the discretization error of a path {?is

Z At = di P

We design the randomized discretization algorithm (RDA),
which is based on Dijkstra’s algorithm but considers two addi-
tive metrics, delay and cost. It uses RR to discretize the link de-
lays. We will prove that it solves the - -approximation of DCLC.

The pseudo code of RDA is given below. A two-dimensional
aTay, wlv, 7, T oV, & |14, stores the cost of the cheapest
path g from  to 4 with #"{{*} ;. Another two dimensional
array, .+ stores thellast link of the path. An auxiliary two-di-
mensional arfay, & v, ¢], keeps track of the minimum discretiza-
tion error on paths whose discretized delays are # from node «
to node .

Given any value of L, RITIA_Dijlestral(ty, s. ) computes
il 4| and x|, . For any destinationw, the function finds the
cheapest paths at different path delays, 4" [11" 1..4) Let P
be the cheapest among these paths. RTYA{L, 57 *iteratively calls
RDA_Dijkstra with an increasing A until the delay of H* is
smaller than {1 | &)r for all «

RDA assumes a preprocessing step that removes all nodes to
which there are no feasible paths from « This step can be done

by calling Dijkstra’s algorithm because only one metric (delay)
is considered.

Initiilize{ T, 2, A)
1. for each vertex « © W, each i = [(1,.A] do
2. ! :-(:__ : = o, fr[‘t.'}-.i] = NIL, f‘[‘i:'-!-] =
GO T [ YR PR

Brelar I u, v 0}

4 # 0 G 4dn )
5. errov = Efu,d] + A
6. if wrver < (v then
7. FEEEIC I Enren 4 '."_.-",'\
8. oy = .i.'r 1
9. if i < hand wle ] » wefw i) + 2w ) then
10. [ ] = wln, 1] — i, 0l
11. & i owm
12, Fe i | v=1oiu{ e, O eveen
LA _Thjkstralds, 2. Al

13, Imitializc(¥, 5, A
14. fori = nto A do

15. =

16.  whiled} £U do

17. wo Kxlpacl BIe00h

18. if 1 w.t = - then

19. break out of the while loop

20. for every adjacent node v of w do
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21. Teedanc KT EA e v £ 0] RDATE, 4]
22 }. = }I-I'l
23. do

24. A= 2
25. LBTrA _Dhilalra( (s, » X
26. while Ju: ¢ T 07 = (14 cir,
where P is the path with min{+{w, 4|4 & [0}

The correctness of the algorithm is given in the theorem
below. The prool can be found in Appendix L

Theorem 1: RDA solves the --approximation of DCLC in
time £ (m + w1 Wil Ao

RDA has the same worst-case time complexity as DSA [18],
which uses RTF. The reason is that, in the worst case, it could
happen that ¢"{n, %] = &f(w v} for all links {w,#} which
makes RR identical to RTF. But such occurrence is extremely
unlikely. More important than the worst-case complexity is the
average-case running time of the algorithm. By its nature, RR is
a statistical approach. It does not improve the performance of the
algorithm for the rare worst case when round-to-floor happens
at all links, but it improves for an average case where round-to-
floor and round-to-ceiling happen probabilistically as specified
in (7). Because positive errors and negative errors cancel out
each other along a path, RDA requires a much smaller \ to com-
plete than DSA, which accumulates positive errors on a path.
Consequently, RDA runs much faster than DSA on average,
which will be evident from our analytical and simulation results.

IV. Path Delay Discretization

Each unit of discretized delay represents the amount ;4 of
real delay. Due to rounding, each time discretization is per-
formed, a discretization error up o »7 A is introduced between
the discretized delay and the real delay. The maximum dis-
cretization error of a path is determined by the number of times
that discretization is performed on the path. RTF, RTC, and RR
perform discretization at the link level. Because discretization
is carried out on each link, the maximum error on the path is
linear to the path length. In order to achieve - -approximation,
the accumulated error on a path cannot be too large. There are
two ways to reduce the error. One is 1o use a larger A, which in-
creases the execution time of an algorithm whose complexity is
linear to A. The other way is to reduce the number of discretiza-
tions performed on the path.

Our second lechnigue (o control error is (o perform discretiza-
tion on the path level, using (he interval partitioning method (or
combinatorial approximation [22]. For a path 7, ideally, dis-
cretization is performed once as [ollows.

i
di )‘J

Iy

(1D

d'EF
Because only one discretization is performed, the maximum dis-
cretization error on any path is bounded by /A, independent of
the path length.

Below we design the path discretization algorithm (PDA)
based on the above intuition. The algorithm solves the:: -approx-
imation with the same worst-case complexity as RDA. However,
its average execution time is better than RDA according to our
simulations. An auxiliary two-dimensicnal array, »[u. 4] keeps
track of the minimum delay of paths whose discretized delays
are 4 from node = to node .

PDA_Dijkstra is omitted because it is identical to RDA_Dijk-
stra except that it calls Relax_PDA.
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Looitialien V) 5, A0
1. for each vertex i = V', each < ¢ {I.A] do
20 anled] s oo, weed o NIL, 5owd 00 o

30w =0k z[ad =00

Belax DA, vl A)
4 = iz d] 4+ e edirjd
5.4F¢ = dand wlo, " = wfu,d] 4 ¢l w) then
6. i) =i, 4 efa,n)
7. ‘.'.‘['i:':'i"] =
8. i d'| = mns o], 2fucd] + diw, g1}

TTHAC, s
9. A=A,
10. do
11. A=
12, PRA_IRjkstalds, 5 4}
13. while ~+; = 1, {f.I:P";I = (14 &)r,
where (** is the path with main[wfe.4]|¢ < [1.-A]]

The correctness of the algorithm is given in the theorem
below. The proof can be found in Appendix II.

Theorem 2: PDA solves the « -approximation of DCLC in
time €2 v 4 e logn ) L7s).

lambda: 10

E

E

=

B
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path length (hops)
lambda: 20

300
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£ 200 -
o

£ 150 1
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@
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=
—

5 10 15

path length {hops)
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Fig. 1 : Comparison of the average discretization errors of RTF,
RTC, and RR with respect to different path lengths. The vertical
axis is the average of j (P )j, j (P )j, or j (P)j over 10 000 sample
paths.
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Fig. 2 : Comparison of the average discretization errors of RTF,
RTC, and RR with respect to different values. The vertical axis
is the average of j (P )j,

j (P)j,orj (P)jover 10 000 sample paths.

V. Analysis

When RTF is used, all links have non-negative discretization
errors with a tight upper bound of r/ 4. Hence, the discretization
errors on links of a path ¢ will add up to a non-negative value
with a tight upper bound of | ST, which is linear to the
path length. Statistically, the longer the'path, the larger the error.
For instance, if A% {w. 1, ¥iw, #1 & #, is uniformly distributed
in |in, {efA3), the mean of A4 Pyis [/ 2hil ).

When RTC is used, all links have non-positive discretiza-
tion errors with a tight lower bound of —r/X% IF A%(w, w],
¥ n) O 1, is uniformly distributed in {—[r /4, 1)], the mean
of A is —[r /24U

The error of the proposed path-delay discretization is always
non-negative with a tight upper bound of /A, independent of
the path length. '

To study RR, we model iz, #), Wiv. i) T £, as a random
variable. For any path #, 4"[F'i1s also a random variable. As-
suming the delays of different links are independent, we prove
the following theorem in Appendix IIT.

Theorem 3: Given a path £, the mean of A% i zero and
the standard deviation of A" {41 is at most + , /T; £*}/24, regard-
less of the probability distributions of the link delays.

We also perform simulations to compare the discretization er-
rors of different approaches. Fig. 1 shows how the discretization
errors of RTF, RTC and RR grow with the path length. The link

www.ijcst.com

1JCST Vou. 2, Issue 3, SEpTEMBER 2011

delay is randomly generated, following an exponential distribu-
tion with a mean at 100 ms. The discretization errors of RTF and
RTC grow linearly with the path length,? while the error of RR
grows sublinearly. Fig. 2 shows that, in order to achieve certain
discretization error goal, RR requires much smaller A than RTF
and RTC, which means that algorithms based on RR are likely
to have less execution time.

VI. Simulation

A. Simulation Setup

The simulation uses two types of network topologies that are
generated based on the Power-Law model [23] and the Waxman
model [24]. In a Power-Law topology, the degrees of 10% nodes
are one, and the degrees of other nodes follow a power law dis-
tribution, i.e., the frequency f; of a degree is proportional to the
degree [ =+ d)raised to the power of a constant {} = 22

f.-,.: ",{ dU

Alter each node is assigned a degree according to the power
law distribution, a spanning tree is formed among the nodes to
ensure a connected graph. Additional links are inserted to ful-
fill the remaining degrees of every node with the neighbors se-
lected according to probabilities proportional to their respective
unfulfilled degrees. A Waxman topology is formed as follows:
the nodes are randomly placed in a one-by-one square, and the
probabilily of creating a link between node +. and node 1 is

T R el @

where i+, 1 is the distance between i and +, i# = 0.4, and 1.
is the maximum distance between any two nodes. The average
node degree is 3.

The default simulation parameters are: The link delays (costs)
are randomly generated, following the exponential distribution
with a mean of 100. = = [1.1. Ay = %. Each data point is the
average over 1000 randomly generated routing requests. More
specifically, we randomly generate ten topologies. On each
topology, 100 routing requests are generated with the source
node randomly selected from the topology. We run DSA, RDA,
and PDA to find a cheapest feasible path to every destination
for which a feasible path exists. All simulations were done on
a PC with PIV 2 GHz CPU and 512 Megabytes memory.

The performance metrics used to evaluate the routing algo-
rithms are defined as follows.

e EXRCTIRION T

rotn] exerntion B for sl requests

Lestad rnvenlier ol moullons reginests
RO T

toabald ot off Podnrr e paths

nenlier of reticne] paths
HLL S THLE

mnlier ol vetnenel pallis thsl are Teasible

rovmbee ol rernened] padhs

All algorithms under simulation guarantee that the delay of
any returned path is bounded by {1 + = ir.
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B. Comparing RDA and PDA With DSA

We compare RDA and PDA with DSA [18], which is the
best known =-approximation algorithm for DCLC. Fig. 3
shows the simulation results on Power-Law topologies with
500 nodes. Both RDA and PDA are much faster than DSA,
with PDA achieving the best execution time. The average costs
of the three algorithms are comparable. The success ratio of
RDA is slightly better than the other two. Because the three
algorithms are close in terms of average cost and success rate in
all simulations, we shall focus on execution time in the sequel.

Fig. 4 compares DSA, RDA, and PDA on Waxman Lopologies
with 1000 nodes. Both RDA and PDA again outperform DSA
significantly.

Fig. 5 compares the scalability of the three algorithms with
respect to the network size. The performance gap between
RDA/PDA and DSA increases for larger topologies. The
improvement exceeds an order of magnitude for 1000-node
networks.

Fig. 6 compares the algorithms with different = values. The
performance gap between RDA/PDA and DSA increases when
= is smaller, i.e., the = -approximation is performed at the finer
level.

In summary, the simulation results confirmed our basic idea
that the execution time could be greatly improved by reducing

the discretization error, which was achieved very effectively by
RDA and PDA. With 1000 nodes and one constraint, RDA and
PDA computes the constrained shortest paths within 38 mil-
liseconds and 25 milliseconds, respectively, which makes them
practical solutions for routers to compute the QoS routing paths
periodically.
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Fig. 3 : Compare DSA, RDA, and PDA on Power-Law topologies.
Both RDA and PDA run much faster than DSA. They run slower
than Dijkstra’s algorithm, but achieve much smaller average path
cost. The success rates of DSA, RDA, and PDA are comparable,
with RDA slightly better.
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Fig. 4 : Compare DSA, RDA, and PDA on Waxman topologies.
Both RDA and PDA run much faster than DSA. PDA is slightly
better than RDA.
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Fig. 5. Scalability comparison. The delay requirement is 1500.
Both RDA and PDA scale much better than DSA, with PDA the
best.
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Fig. 6 : Compare DSA, RDA, and PDA with respect to different
" values. The delay requirement is 1500, and the network size
is 500. Both RDA and PDA run much faster than DSA. PDA is
slightly better than RDA.

C. Comparing RDA and PDA With H_MCOP

We compare RDA and PDA with a fast heuristic algorithm
H MCOP [14], whose time complexity is the same as that of
Dijkstra’s algorithm. H MCOP does not solve the - approxi-
mation of DCLC. Its goal is to use heuristics to greatly reduce
the computation time. To construct a feasible path with low cost
from a particular source node to a particular destination node,
H_MCOP requires building a shortest-path tree from all nodes

www.ijcst.com
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Fig. 7: Compare RDA and PDA with H_ MCOP.

to the destination node and a tree from the source node to all
nodes. By the algorithm’s two-tree design, it is efficient in com-
puting a low-cost feasible path from one source to one destina-
tion, but it is not suitable to find low-cost paths from one source
to all destinations. To solve this problem, H_MCOP would have
to repeat = times, one for each destination and with a total time
complexity of €3wre | »*logw) In comparison, RDA and
PDA solve the --approximation of DCLC, and they find con-
strained shortest paths for all destinations with the same com-
plexity ¢} Ln—rclogrliLie)) as finding a constrained shortest
path for a single destination.

The comparison of RDA/PDA and H MCOP is made under two
scenarios. The first scenario is to use them as on-line algorithms
that process delay-constrained least-cost unicast routing requests
as they arrive. The results are shown in fig. 7. H MCOP has
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also a parameter called lambda for a different purpose, which
is however insignificant when there is only one constraint (for
delay). H MCOPssignificantly outperforms RDA/PDA in average
execution time, RDA/PDA are better in terms of average cost and
success rate because they relax the delay requirement by a factor of
.H _MCOP is a more efficient on-line algorithm than RDA/PDA.

Table 1 : Execution Time (Milliseconds) of Finding Delay-
Constrained Least-Cost Paths from A Source to All Destinations
On Power-Law Topologies

no. of nodes | RDA | PDA | H.MCOP

1M} 1.3 0.8 352

200 3 2.2 159.4
300 58 3.8 695
4] 8.3 6.9 G734
S0 13.3 0.4 10922
G 196 12.6 16156
TOHD 25.3 17.0 22859
00 321 20.8 30242
R 4.4 2h5 2946, 1
1000 48.2 320 4964 8

In practice, on-line algorithms are not always desired. When the
request arrival rate is high (major gateways may receive thousands
or tens of thousands of requests every second), even the time
complexity of Dijkstra’s algorithm (executed on a per- request
basis) will overwhelm the router. One typical approach to solve
this problem is to extend a link-state protocol (e.g., OSPF) and
periodically pre-compute delay-constrained least- cost paths for
all destinations. In this way, the computation load on a router is
independent of the request arrival rate. Under such scenario, RDA/
PDA significantly outperforms H MCOP by or- ders of magnitude
when the number of nodes is large, as shown in Table I.

Therefore, H MCOP is more suitable as an online algorithm, while
RDA/PDA are more suitable to calculate DCLC paths from one
source to all destinations so that a routing table for certain QoS
service class can be established. In addition, RDA/PDA are the
choice when a constrained multicast tree is calculated centrally.

VII. Conclusion

In this paper, we proposed two techniques, randomized dis-
cretization and path delay discretization, to design fast algo- rithms
for computing constrained shortest paths. While the pre- vious
approaches (RTF and RTC) build up the discretization error along
a path, the new techniques either make the link errors to cancel
out each other along the path or treat the path delay as a whole
for discretization, which results in much smaller errors. The
algorithms based on these techniques run much faster than the
best existing algorithm that solves the approximation of DCLC.

APPENDIX PROOF OF THEOREM |
Refer to Section III for the lines of the pseudo code of RDA
(randomized discretization algorithm).
Lemma 1: Tt always holds that &[4 = 0 ¥ T
()]

Proof: 1t holds initially. The value of # changes only
at Line 12. Suppose #|w.i| > 0 and 4'i-,#] = 1 before
Trelaw_It13A L ] is called. Because —[vfA) = A" w] <
rfA, Lines 6-7 make sure that rrroe > ik Hence, #[u. i = 1
after Line 12. The lemma remains true after the call. -

Vi ¢
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Lemma 2: Let 1** be the path stored by 4, /). It always
holds that df 23 = i(r #3014+ Bl Fuoe ¥, 6 2 4]
Proof: Suppose it holds before Itelax RTXAT, . 1is called.
o= dle fA1 — #w. 2] The new path under consideration is
LR T
AL — Dl =d (28| diney)
= b . . r o T
= ?.1 + ﬁ[w.. 1] + ", 1.-]]

= (i +d [, )] fI + Ao

A"
AT ]

After Lines 4-8, (P | [w,vd) = d%rfAd | errar After
Line 12, &% " = v, Hence, ol #7 — (o] I >
'{riAY  f[w,#']. The lemmaholds after the call. | |
Lemma 3: Let ¥ be the path stored by « u.i|. It always
holds that ¢ifr=® < 4 4+ NP Al Yu o Vo0 o kY,
where {7 #7115 the length (hops) of #¥.
Proof: Suppose it holds before [talax RTrAL, ] is called.
22 =L Y04 A0 The new path under consideration is
Py Ty

d (0 — )l = (28 + i v
< ()Y — i, -;-jl\' A )

= (i e, ) % + ATl LT %

ot [
LR (A Rl 3

After Line 12, (' | fuy it = 25 < (PR P /A0
The lemma holds after the call. O

Theorem 1: RDA solves the = -approximation of DCLC in
time ¢ e + v log niLiz).

Proof: We first prove that if RDA terminates, it solves
the ~-approximation of DCLC. Consider an arbitrary node ! .
Let I, ; be the cheapest feasible path. Assume this is the only
path from » to *. Consider Ttelaax_I313A{. . .} is called on a link
[t i of LA After Lines 4-5, + i— I_F\I:'n',.'.!'.'_'.:l i 4
(dia, ) A%e 0)dAri=4 (dia e orrov) 8w, 10 A )
After Lines 6-8, because ewvvor = 1), &7 < 1 4 F|w, 3| A7) +
diw v A el ByLemmaZ2, & 8w i]iAfr) < i PRjiA) We
have 3 < (i £ — {0 0A ) 7 dEEL A ) <0 A Lines
9-12 will be executed. Eventually, J*, , will be stored by r|t,+]
for some § = A '

Now if there exist other paths from « to ! and one of them
replaces {4, . during the relaxation, the path must have a smaller
cost than ¥, ;. Hence, when RDA terminates, let j* be the path
returned by RDA for ¢ with win{wldf e 047 We must
have .- [p“ i e[, and @ M2 01 i because otherwise
RDA will not terminate.

We now prove that RDA terminates in time £l o4
w oLz When & = 4. /=, by Lemma 3, v = T,
AP I NP A e WP (e f L 2 (1 — 20 By
Line 26, RDA terminates.

The time complexity of each execution of
B Kiksieal-o) I8 (Aim  — nlozeldi Since A
doubles each time, the time of the last execution is larger than
the combined time of all previous executions. Therefore, the
complexity of RDA i8 ¢3{{vm — a losrn 4.7z 1
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APPENDIX PROOF OF THEOREM 2

Reler to Section IV [or the lines of the pseudo code of RDA
(randomized discretization algorithim).

Lemma 4: Let Fi* be the path stored by ', o] It always
holds that s[w, 7] < dI58L Feoo Vod C[00A]

The proof is trivial based on Line 8.

Lemma 5: Let f* be the path stored by w7, o] It always
holds that zw, @] = /A7, e 2V, 7 & 14

Proof: Suppose it holds betore 1ialax TTAT | iis called,

namely, 2[u, 4] = i+ A} and £ 47 = ¢ 4] The new path
under considerationis Fi* | [, ).

) i
o 2tdl —dloel

an
iV

-
zlwd Fdin vl = 'i'II

Afler Line 8 is executed, #[o, & = i'fv-/ A remains true. O
Lemma 6: Let F:* be the path stored by =« . i. It always
holds that A7y < (& | JIPANe ALY & Vi e LA,
where I [**'is the length (hops) of f**.
Proof: Suppose it holds before Tirlax_PI3A[. . iis called.
AP435 =G+ PR 00w # 4. The new path under consideration
IS I FTI

I SR TR BT A I S

5u+umm§—ﬁmw

e |

< g d| 4 i, vl + O

-t 1% ",E
LHII[HHJ+‘:A

After Lines 5-8, |}f|ij*"{""+ [a1. 'r-‘]jl =l o :| <0 |:-.fr +fi Fi ':\|,r. .l}.].
The lemma holds after the call. |
Theorem 2: PDA solves the :--approximation of DCLC in
time M | mlogr sl
The proof is similar to that for Theorem 1 in Appendix L

APPENDIX PROOF OF THEOREM 3
Theorem 3: Given a path I*, the mean of A¥/{*1is zero and
the standard deviation of A7 [ F} is at most « \W,EA regard-
less of the probability distributions of the link delays.
Proof: Consider an arbitrary link {#:. ¢j on f*.

A u)

L r
div,u] A T, el

A

i, ) L‘:_‘A ),-I £ with prob.
o rar'::.:-:} [r-!ﬁ:_-*'] )‘J
de, o) %" }‘J + withprob. pa | g

The mean (or expected value) of A7 [, i is

T )

- A,

+ (rf[u._ ) . v] }.J -
-

TR
Wy

ETA w21 = [(f-ﬁ{'-u )
L

e |

)
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There are two cases.

o Case 1: If [if"u. ] /v) A is an integer, i.e., (e[, w3474 =
ek, v X [, e, then it is clear that
A ) =L

. Case2: If : {}‘uf-r;., #17r 14 is not an integer, then

\‘cflz'u.! ul \'LJ
r >
_ "-'j[ i, 'r,"}}w i, 2] 3
- .
E{AT(u,v)) = (c.;-:-u.-a‘l F“ s ‘J _)
2 L) ] " R
_ (ui{ﬂ:q Iy \‘rfl T -}' )
p
, eI
(rl 10,17 _f_ J }L)
| ( i, ] ﬂ i, ] 1)
i >

=i (12)

pa=1

Denote F7A7 7w, 1:1% as g for clarity. Since the probability
density function of o, i} i fi il o = 4, 4], the vari-
ance of A7 7y, w1

VA (i, )

a

j.t-)_ : :a:lg] - Foa i

Sk

! (EA | TA_ ) g :13"_1] S L T

r

When d[u,x} = 1 o= xieid |{rfrid] by (7), and

pao= Lm0l A Drfeid by (12). Hence,

]

S (] )
(] ) (2

. .|r1:| oo :.rlll ik

o
=

(] B (-] )

Faerpiike

+ (Ek

v

- Faeriride
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