
Phishing Detection based on Web Page Similarity
1Radha Damodaram, 2 Dr. M.L. Valarmathi

1Dept. of BCA, SS & IT, CMS College of Science & Commerce, Coimbatore.
2Dept. of Computer Science & Engg Government College of Technology, Coimbatore.

Abstract
Phishing is a current social engineering attack that results in online
identity theft. Phishing Web pages generally use similar page
layouts, styles (font families, sizes, and so on), key regions, and
blocks to mimic genuine pages in an effort to convince Internet
users to divulge personal information, such as bank account
numbers and passwords. A novel technique to visually compare an
assumed phishing page with the legitimate one is presented. Five
important features such as signature extraction, text pieces and
their style, images, URL keywords and the overall appearance of
the page as rendered by the browser are identified and considered.
An experimental evaluation using a dataset collected of 150 real
world phishing pages, along with their equivalent legitimate targets
has been performed. The investigational results are satisfactory
in terms of false positives and false negatives and an efficiency
rate of about 98.11% for false positive pages and 92.95% for false
negative pages has been obtained.

Keywords
Phishing, DOM Antiphish

I. Introduction
The underlying assumption of this system is that a phishing page
aims to mimic the appearance of the targeted, legitimate page.
Thus, when two pages are similar, and the user is about to enter
information associated with the first page on the suspicious, second
page, an alert should be raised. When the two pages are different,
it is unlikely that the second page tried to spoof the legitimate site,
and thus, the information can be transmitted without a warning.
Whenever a suspected phishing email is found, the potential
phishing URL is extracted from the email. Then, the corresponding
legitimate page is obtained, using a search engine or, based on
keywords, selecting among a predefined set of registered pages.
Finally, a comparison is initiated and, if the outcome is positive,
the email is blocked. To compare a target page (i.e., suspected
page) with a legitimate page, four steps [1] are required:

Fig. 1 : Block diagram of the process

1. 	 Retrieve the suspicious web page w.
2. 	 Transform the web page into a signature S (w).
3. 	 Compare S (w) with the stored signature S (w´) of the

supposed legitimate page w´ (i.e., the page targeted by the
phishing page).

4. 	 If the signatures are “too” similar, raise an alert.
Steps 2 and 3 represent the main aspect of this paper. We discuss
these steps in detail in the next two subsections. The actual
implementation of Step 4 depends on the specific application
scenario in which the approach is used. For example, in Antiphish,
raising an alert implies that the submission of sensitive data is
canceled and a warning is displayed to the user.

II. Existing Approach

A. Antiphish
AntiPhish [5] is a browser plug-in that keeps track of sensitive
information. Whenever a user attempts to enter sensitive
information on one site, and this information has previously been
associated with a different, trusted site, a warning is generated.
This is effective when a user inadvertently enters bank login
information on a phishing site. However, AntiPhish suffers from
the problem that legitimate reuse of credentials is also flagged
as suspicious.

B. DOM Antifphish
To address the usability problem of Antiphish, DOM AntiPhish
[10] was proposed. For that approach, the authors compared the
Document Object Models (DOMs) of the pages under analysis to
determine whether the two pages are similar. When information
is reused on a page that is similar to the original page (that is
associated with the sensitive data), a phishing attempt is suspected.
When the information is entered on a site that is completely
different, the system assumes legitimate data reuse. Although
DOM AntiPhish is able to identify phishing pages effectively, its
major limitation is that the DOM tree is not necessarily a reliable
feature to establish similarity between pages. In some cases, it is
possible for the attacker to use different DOM elements to create
a similar look-and-feel and appearance of a page. Furthermore, a
phishing site that only consists of images cannot be detected.

III. Implemented System
A typical phishing attack may be based on several techniques,
including exploiting browser vulnerabilities or performing
man-in-the middle attacks using a proxy. However, the most
straightforward and widespread method consists of deploying a
web page that looks and behaves like the one the user is familiar
with. In this paper, an effective approach to detect phishing
attempts by comparing the visual similarity between a suspected
phishing page and the legitimate site that is spoofed is presented.
When the two pages are “too” similar, a phishing warning is raised.
In this system, three features to determine page similarity: text
pieces (including their style-related features), images embedded
in the page, and the overall visual appearance of the page as seen
by the user (after the browser has rendered it) are considered. The
similarity between the target and the legitimate page is quantified
by comparing these features, computing a single similarity score.
A comparison based on page features that are visually perceived
is performed. This is because phishing pages mimic the look-and-
feel of a legitimate site and aim to convince the victims that the

 406  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

site they are visiting is the one they are familiar with. Once trust
is established based on visual similarity, there is a higher chance
that the victim will provide her confidential information. Typically,
a victim’s visual attention focuses both on the global appearance
of the page and on salient details such as logos, buttons, and
labels. In fact, these observations are supported by both common
sense and literature. For example, Dhamija et al. [5] show that
about one in four users base their trust only on page content (i.e.,
images, page design, colors) to decide whether the page is 12
legitimate or not. Obviously, these users are the ones that are most
prone to fall victim to a phishing attack. This paper implements
the phishing detection technique that is based on the similarity
between the legitimate page and the phishing page based on its
characteristics such as text components, image elements and overall
appearance [13].

A. Description of the implemented System
One possible application scenario for the implemented system
is to integrate the visual similarity detection scheme into the
open source tool AntiPhish. AntiPhish tracks the sensitive
information of a user and generates warnings whenever the user
attempts provide this information on a web site that is considered
to be un-trusted. It works in a fashion similar to a form-filler
application. However, it not only remembers what information
(i.e., a username, password pair) a user enters on a page, but it also
stores where this information is sent to whenever a tracked piece
of information is sent to a site that is not in the list of permitted
web sites, AntiPhish intercepts the operation and raises an alert.
Although simple, the approach is effective in preventing phishing
attacks. Unfortunately, when a user decides to reuse the same
username, password pair for accessing different online services,
too many undesired warnings (i.e., false positives) are raised. By
integrating the comparison technique into the existing AntiPhish
solution, AntiPhish can be prevented from raising warnings for
sites that are visually different. The underlying assumption is that
a phishing page aims to mimic the appearance of the targeted,
legitimate page. Thus, when two pages are similar, and the user
is about to enter information associated with the first page on
the suspicious, second page, an alert should be raised. When the
two pages are different, it is unlikely that the second page tried
to spoof the legitimate site, and thus, the information can be
transmitted without a warning. 14 Of course, this technique can
also be used in other application scenarios, as long as a baseline
for the suspicious page is available. That is, it needs to know
what the legitimate page looks like so that comparison can be
made against it. For example, the approach could be part of a
security solution that works at the mail server level. Whenever
a suspected phishing email is found, the potential phishing URL
is extracted from the email. Then, the corresponding legitimate
page is obtained, using a search engine or, based on keywords,
selecting among a predefined set of registered pages. Finally, a
comparison is initiated and, if the outcome is positive, the email
is b locked. To compare a target page (i.e., suspected page) with
a legitimate page, four steps are required:
1.	 Retrieve the suspicious web page w.
2.	 Transform the web page into a signature S (w).
3.	 Compare S (w) with the stored signature S (w´) of the

supposed legitimate page w´ (i.e., the page targeted by the
phishing page).

4.	 If the signatures are “too” similar, raise an alert. Steps 2 and
3 represent the core techniques. These steps are discussed in
detail in next two subsections. The actual implementation of
step 4 depends on the specific application scenario in which

the approach is used. For example in Antiphish, rising an alert
implies that the submission of sensitive data is canceled and
a warning is displayed to the user.

1. Signature Extraction
A signature S (w) of a web page w is a quantitative way of capturing
the information about the text and images that compose this web
page. More precisely, it is a set of features that describe various
aspects of a page. These features cover,
(i) 	 Each text section with its attributes,
(ii) 	 Each visible image,
(iii) The overall visual look-and feel (i.e., the larger composed

image) of the web page visible in the viewport1. The
following paragraphs describe in more detail the features
that this system extracts from a web page.

2. Text Elements
A text element is a visible piece of text on the web page that
corresponds to a
leaf text node in the HTML DOM tree. For each piece of text,
extract:
i. 	 Its textual content,
ii. 	 Its foreground color,
iii. 	 Its background color,
iv. 	 Its font size,
v. 	 The name of the corresponding font family, and
vi. 	 Its position in the page (measured in pixel starting from the

upper left corner).

Thus, for each text element, obtain a 6-tuple t that is called text
tuple. The signature of the page contains a vector t0. . . tn of k
tuples, where each of the k tuples represents one visible piece of
text on the web page. Using JavaScript the Background color can
be extracted using, this.

getActualBackgroundColor = function(node)
{var bgcolor; if (node.nodeName==”#document”)
{bgcolor = node.bgColor;}
e l s e { i f (n o d e . o w n e r D o c u m e n t . d e f a u l t Vi e w. g e t
ComputedStyle(node, null))
bgcolor = node.ownerDocument.defaultView.get ComputedStyle
(node, null).getPropertyValue
(“background-color”);
if (bgcolor == “transparent”) {bgcolor = this.get Actual
BackgroundColor(node.parentNode);}
else {bgcolor = this.getActualBackgroundColor(node.
parentNode);}
{return bgcolor;}}

Fig. 2 : Extracting Code

3. Image Elements
For each visible image of the web page, the following attributes
are extracted:
i. 	 The value of the corresponding src attribute (i.e., the source

address of the image),
ii. 	 Its area as the product of width and height, in pixel,
iii. 	 Its color histograms,
iv. 	 Its 2D wavelet transformation, and
v. 	 Its position in the page.

Thus, for each image element on the page, 5-tuple I, image tuple
is obtained. The signature S (w) contains a vector i0. . . im of

  International Journal of Computer Science and Technology  407

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

tuples, where each tuple represents one visible image on the web
page. To extract a color histogram from an image proceeds as
follows: First, obtaining a square image of l × l pixels, the image
is resized. For the image elements, set l = 128.
In case the image width w and height h are both lower than l, adjust
the size to obtain a square image of 2k×2k, where k is the greatest
value for which 2k ≤ w and 2k ≤ h. The resize operation leverages
a built-in function in Firefox that is able to adjust images to fit
into rectangles of arbitrary dimensions. It is done for performance
reasons, so that the following computations can be executed faster.
Using the scaled image, the second step is to compute the histogram
of the RGB components, using n histogram cells. For the image
elements, n = 5. This is done for all three colors in the RGB color-
space. For example, consider the red component and 5 histogram
cells. Count the number of pixels whose red component value is
in the range [0, 50] (recall that each color channel has 8 bits) to
obtain the first red histogram bar, the number of pixels whose
red component value is in the range [51, 101] for the second bar,
and so on; finally, normalizing the bar values such that their sum
is equal to 1.The 2D wavelet transformation [12] is an efficient
and popular image analysis technique that, essentially, provides
low-resolution information about the original image. It can be
calculated in O (n) time, where n is the size of a square, grayscale
image. The wavelet transformation operates on the scaled, square
image, which is obtained as described previously. In the first step,
this image is converted into grayscale version. Then, compute
the 2D wavelet transformation and take the first m×m wavelet
coefficients at the low-resolution end of the matrix. For image
elements, a value of m = 8 is used.

4. URL keywords
Detecting phishing page is to be redirected to the correct one
instead of providing hints to users. Since users are not always
aware of alerts that displayed by anti- phishing toolbars. It would
be better if URL redirections are enforced when the accuracy of
detection rates is good enough and the error rate is limited

5. Overall appearance
Finally, the overall image corresponding to the viewport of the
web page as rendered by the user agent (i.e., the upper left portion
of the rendered web page that fits a browser window maximized
on a typical display is considered. In this case, a screen resolution
of 1280 × 800 pixels) is used. For this image, color histograms
and its 2D wavelet transformation is extracted. For the overall
appearance, a single pair o that is called overall image tuple
is obtained, which represents the overall visual image of the
web page. The color histogram and the wavelet transformation
computation are performed in the same way as for the individual
image elements. To capture the overall appearance image with
higher precision, the features on a larger image are computed.
That is, l = 256 is used, meaning that the size of the scaled-down
image is 256 × 256 pixels. Also, the number of cells for the color
histogram is increased to n = 8, and m = 16 wavelet coefficients
is selected.

IV. COMPARISION

A. Page signature
Once the features that capture the overall appearance of a page
and each of its text and image elements are extracted, this page’s
signature S(w) is stored. The signature is simply the set of all text
tuples, image tuples, and the overall image tuple:
S(w) = t0, . . . , tn, i0, . . . , im, oi.

B. Signature Comparision
Once two signatures S(w) and S(w´) are available, the similarity
score between the corresponding web pages w and w´ is computed.
To this end, start by comparing pairs of elements from each page.
Of course, elements are only compared with matching types (e.g.,
text elements are only compared with other text elements).
That is, all pairs of text elements are compared to obtain a similarity
score st. Then, all image pairs are compared to obtain a similarity
score si. Finally, the overall appearances of the two pages are used
to derive a similarity score so. Using these three scores, a single
similarity score s [0, 1] is derived that captures the similarity
between the pages w and w´.

1. Text elements
Concerning the text elements, the comparison is done as follows.
For each pair of text tuples ti of S(w) and tj´ of S(w´), the following
computation is performed:
• 	 The similarity between the two textual contents T and T´ is

given as: 1 − dl (T, T´) (3.1)
	 Max (length(T)), length(T´)
	 where dl (T, T´) is the Levenshtein distance [10] between T

and T’
• 	 The similarity between the two foreground colors C and C´

is given as:
	 1 − 1 (3.2) (3·255) L1(C, C´)
	 where L1 is the 1-norm distance (also known as Taxicab

metric or Manhattan distance
	 [9]) between the colors expressed as 8-bit RGB points
	 (i.e., L1(C, C´) = |r − r´| + |g − g´| + |b −b´|) (3.3)
• 	 The similarity between the two background colors are

computed, in the same way as above
•	 The similarity between the two font sizes F and F´, is

expressed in pixel, as
	 1 − |F− F´| (3.4) max(F, F´)
• 	 The similarity between the names of the two font families

are computed, setting 0 if they are equal, 1 otherwise
• 	 The similarity between the two positions in the pages is given

as 1 − d (3.5)

where d is the Euclidean distance between the two points and
Md is the maximum Euclidean distance between two points in
a viewport of 1280 × 600 resolution. Note that all the obtained
similarities are in the range [0, 1], where 0 means no similarity
and 1 means total match. The sum the 6 individual similarities
scores is found using the weights (4/15), (4/15), (2/15), (2/15),
(2/15), (1/15) (Whose sum is equal to 1), and obtain the similarity
st i,j between ti and tj´ The weights were manually chosen based
on the domain knowledge and the assessment of the importance
of the corresponding features to the visual similarity between two
text blocks. These weights only serve as a rough estimate for the
different impact of features. Clearly, the content of the text and
the text color are more important than the used font family. This
intuition is reflected by the weights. The actual values have not
been optimized, and it might be possible to further improve this
system by tuning the weights. Once similarity score between all
pairs of text elements are obtained, it is stored in a similarity
matrix St. This matrix stores, for each pair of elements ti and tj´,
the similarity between these two elements. The dimension of the
matrix is n × m, where n is the number of text elements on page
w and m is the number of text elements on w´.

 408  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

<html> <h1 style=”color:rgb(255,0,0);”>Home
banking</
h1>
<p>Welcome!</p>
<p>Copyright 2007</p>
</html>
and:
<html>
<center>
<h1 style=”color:red;”>Your banking</h1>
<p style=”color:gray;”>Welcome!</p>
</center> </html>

Fig. 3 : HTML Coding for background extraction

As an example, suppose the textual parts of two pages whose
corresponding HTML documents compared are shown in fig. 3.

The corresponding text tuples are, respectively:
t1 = {Home banking, (255, 0, 0), (255, 255, 255), 32, Serif, (8,
8)}
t2 = {Welcome!, (0, 0, 0), (255, 255, 255), 16, Serif, (8, 66)}
t3 = {Copyright 2007, (0, 0, 0), (255, 255, 255), 16, Serif, (8,
102)}
and:
t1´ = {Your banking, (255, 0, 0), (255, 255, 255), 32, Serif, (8,
21)}
t2´ = {Welcome!, (128, 128, 128), (255, 255, 255), 16, Serif, (8,
80)}

The system first compares each pair of text elements, computing
a similarity score. For the tuples t1 and t1´, this yields:
St 1, 1 = (4/15)0.75+ (4/15)1+ (2/15)1+ (2/15)1+ (2/15)1+
(1/15)0.98375= 0.93225 When the computation is performed
for each pair, the similarity matrix St can be determined. In this
example, this is the following 3 × 2 matrix:
 	 0.9322500 0.5493813 			 (3.6)
St =	 0.5740278 0.8649771
 	 0.6062897 0.5948105

2. Image elements
Concerning the image part, the comparison is done as follows.
For each image tuple ii of S(w) and for each image tuple ij´ of
S(w´): • The similarity between the two src attributes using the
Levenshtein distance is computed, as above; 23 • The similarity
between the two image areas A and A´, expressed in pixels, is
given as

1− |A−A´| (3.7) max(A,A´)

• 	 The similarity between the two matrices representing the
color histograms C and C´ as 1 − L1(C, C´) is computed,
using the 1-norm distance

• 	 The similarity between the two matrices representing the
2D wavelet transformations is computed, using the 1-norm
distance as above

• 	 The similarity between the two positions in the pages is
computed, as described previously for text tuples. Again, all

similarities are in the range [0, 1]. Then sum these similarity
values, using the weights (4/11), (2/11), (2/11), (2/11), (1/11).
The result is the distance si i,j between ii and ij´ . Based on
these distance values, a similarity matrix Si that captures
the similarity between the image elements of S(w) and
S(w´) is derived. Again, the weights are set according to
the assessment of the visual impact of each feature.

3. URL Keywords
URL is a common feature to detect phishing sites because attackers
often tries to confuse users by embedding strings similar to the
domain name of the targeted website in phishing URLs. Hence, we
extract URL keywords as parts of the signature from the domain
name of a valid website.
Not all words appeared in a domain name are extracted as keywords.
To extract keywords from a domain name, we first split words in
the domain name by the dot symbol. Then, we remove top level
domains (TLDs) and country-code top level domains (ccTLDs).
Common words used in domain, for example, www and mail,
are removed [14].

4. Overall appearance
Finally, concerning the appearance of the overall image, similarity
in terms of color histograms and of 2D wavelet transformations is
computed, in the same way as described previously for images. The
similarity index so as the average of the two values is obtained.

5. Individual similarity scores
To obtain a similarity score s from a similarity matrix S (st for
the text matrix St and si for the image matrix Si), average the
largest n elements of the similarity matrix. The largest n elements
of the matrix are selected using the following iterative, greedy
24 algorithm:
(i)	 select the largest element of the matrix
(ii)	 discard the column and the row of the selected element.

These steps are repeated until a number n of elements are
selected or the remaining matrix is composed of either no
rows or no columns. Then, n = 10 is set for the text similarity
matrix and n = 5 for the image similarity matrix. In other
words, the n most matching items (either among text blocks
or among images) are extracted between the two web pages
under comparison, avoiding considering an item more than
once.

Consider the average of the greatest n values in the matrix instead
of considering the whole matrix in order to avoid the case in
which the comparison outcome is influenced mainly by many
non-similar elements rather than by few, very similar elements
(which are typically the ones that can visually lure the user). For
example, consider a phishing page in which there are very few
images (e.g., the logo and a couple of buttons) that are very similar
to the ones in the legitimate page. Also, imagine that there are a
large number of graphical elements, possibly small and actually
rendered outside of the viewport, which are not present in the
original page; if the average over the entire matrix elements are
taken, the outcome would be biased by the low similarity among
the many dissimilar elements. However, the user would be tricked
by the few elements that are very similar.

6. Final similarity score
The final outcome of a comparison between two signatures is the
similarity scores. This score is obtained based on the individual
scores for text and image elements, as well as the overall

  International Journal of Computer Science and Technology  409

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

appearance: s = at st + ai si + ao so. When s is large, the two
pages are similar. A threshold t is used in order to discriminate
between the two cases: w and w´ are considered similar if and
only if s ≥ t, not similar otherwise. In this paper text, image and
overall appearance are considered for comparison.

V. Implementation and Result Analysis

A. Experimental Evaluation
A dataset that consists of negative and positive pairs of web pages.
For the positive pairs, pairs of real-world legitimate pages and
corresponding phishing pages are selected. The phishing pages
are obtained from the PhishTank public archive (http://www.
phishtank.com). For each phishing page, the corresponding
legitimate page is retrieved by visiting the web site of the spoofed
organization immediately after the attack appeared on Phish Tank.
To build the negative part of the dataset, a number of common
web pages are collected, unrelated to the legitimate ones. Then
the set of positive pairs are partitioned into three subsets, based
on their visual similarity. That is, three levels of dissimilarity are
defined as perceived by a human viewer who manually looks and
compares a legitimate web page and the corresponding phishing
page. Each subset is denoted with a dissimilarity level label:
Level 0 identifies pairs with a perfect or almost perfect visual
match. Level 1 identifies pairs with some different element or
with some minor difference in the layout. Level 2 identifies pairs
with noticeable differences.
The partition positive pairs are chosen into different subsets for the
following reason: The majority of phishing pages exactly mimic
the appearance of the legitimate page. This is not surprising, as
the miscreants do not wish to raise suspicion. However, there are
also cases where visual differences do exist. These differences may
be simply due to the poor skills of the attacker (e.g., mistakes in a
text translated to a foreign language). However, some differences
may be voluntarily inserted, both at the source level and at the
rendering level. This could be done to evade anti-phishing systems,
while, at the same time, keeping the look-and-feel as close to the
original web page as possible. Similar 26 evasion techniques are
sometimes used by spammers for image-based spam [2].
That is, although some randomized alterations are applied to the
original image, from the user’s point of view, the image remains
identical. The negative pairs set are partitioned into two subsets.
One subset consists of web pages with a login form. The second
one has no such forms. The pages in the first subset mainly selected
from Internet banking web sites. The second subset was chosen
by performing a manual selection of pages, aimed at obtaining
a heterogeneous and random sample set varying in size, layout,
and content.
A substantial portion of pages are chosen with a login form to make
the experiments more realistic and challenging. This is because
pages that maintain a login form are more likely to be compared
against legitimate pages when trying to detect phishing pages. The
results obtained are illustrated in the Fig.s shown below.

Fig. 4: Text Comparison

Fig. 5 : Image Comparison

Fig. 6 : Overall Appearance

Fig. 7 : Output page for phishing website

 410  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

Fig. 8 : Output page for legitimate website

B. Result analysis
For this experiment, the test set was composed of 180 positive
pairs (85 of Level 0, 47 of Level 1, and 48 of Level 2).

Table 1 : Result analysis
Levels False

Positives
Fake
Positive
Rate

False
Negatives

False
Negative
Rate

All (0,1
and 2) 48

2 1.1 1 2.08%

Only 0
and 1
47

1 0.1 1 2.08%

Only 0
85

1 0.1 1 2.08%

Table 1 summarizes the results of the tests. It can be seen that this
approach detects all phishing pages classified as Level 0 and 1,
while it fails to detect 2 out of 180 positive pairs of Level 2. Hence,
an overall false positive rate (FPR) equal to 1.11% and an overall
false negative rate (FNR) equal to 2.08%. Here the verification is
done, by visual inspection that those pairs were indeed difficult
to detect by this visual similarity-based approach.

In general, the choice of t depends on the desired tradeoff between
possible false positives and possible false negatives. Hence, it
depends on the context in which the proposed approach is
supposed to be deployed. For example, if the comparison approach
is implemented as part of the AntiPhish tool, it may be preferable
to select lower values for t. The reason is that when using the
visual comparison component with AntiPhish, a large number of
possible false positives is already filtered out, since the comparison
is invoked only when a user’s known credentials are about to be
transmitted to an untrusted web site. Therefore, the comparison
may be relaxed towards accepting more false positives (warnings)
in favor of avoiding missed detections.

Fig. 9 : Comparison of three levels

Finally, the average computation time for comparing two pages
is measured as shown in the Fig. 4.6. Note that such an operation
involves both the signature extraction and the signature comparison
phase. In this experimental analysis comparison phase is focused.
The extraction phase consists mainly of retrieving information
which, in practice, is already available to the browser that has
rendered the page. Moreover, the legitimate page signature is
typically extracted once at a previous point in time.

In this experiment, it took about 3.8 seconds for positive pairs
and about 11.2 seconds for negative pairs to be compared. The
key idea to improve performance is to execute the comparison
operations in an order such that the most expensive operations
are executed last.

In particular, during the similarity index computation (either st,
for the text section, or si, for the images), the n (with n = 10
for the text part and n = 5 for the image part) similarity values
are kept for the most similar pairs of tuples found so far. When
evaluating a new pair of tuples, the evaluation can be stopped once
it determine that this pair cannot exceed the similarity values of one
of the top n pairs, even if all remaining features comparisons yield
perfect similarity. For example, suppose that: (i) a pair of images
is considered, (ii) the distance is computed in terms of positions
on the page and image sizes, and (iii) the distances are such that
with the given weights, the corresponding matrix element will be
lower than the 5th retest element of the matrix. In this case, no
need to compute, or extract, the two Haar transformations or the
Levenshtein distances. Once it is determine that, after looking at
the score for the overall appearance, two pages cannot exceed the
similarity threshold t, then no need to compute any of the two
similarity matrices for the text and image elements. This results
in impressive speeds-ups. A negative comparison between two
pages is produced in a few milliseconds.

VI. Conclusion
Phishing has becoming a serious network security problem,
causing financial loss of billions of dollars to both consumers and
e-commerce companies. Phishing has made e-commerce distrusted
and less attractive to normal consumers. The characteristics of the
web similarity that are exploited in phishing pages are studied.
In this paper, an effective and novel approach to detect phishing
attempts by comparing the visual similarity between a suspicious
page and legitimate target page has been presented.

When checking for visual similarity, five page features: signature
extraction, text pieces and their style, images embedded in the
page, URL keywords and the overall visual appearance of the web
page as rendered by the browser are considered. Features that are
visually perceived by users are considered because, as reported in
literature, victims are typically convinced that they are visiting a
legitimate page by judging the look-and-feel of a web site.

A dataset consisting of 150 real phishing pages with their
corresponding target legitimate pages are considered. The results,
in terms of false alarms and missed detection, are satisfactory.
1% false positives were raised and only 2.08% false negatives
were calculated.

References
[1]	 Eric Medvet, Engin Kirda, Christopher Kruegel, "Visual

similarity-based phishing detection", Computational
intellligence in cyber security 2009. CICS ‘09. IEEE

  International Journal of Computer Science and Technology  411

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

Symposium pages: 30-36
[2]	 Masanori Hara, Akira Yamada, Yutaka Miyake D. "Visual

similarity-based phishing detection without victim site
information", IEEE International Conference on Security
and Privacy in Communication Networks (Secure Comm),
2008.

[3]	 APWG. "Phishing Activity Trends - Report for the Month
of December, 2007". Technical report, Anti Phishing
Working Group, Jan. 2008. [Online] Available : http://www.
antiphishing.org/reports/ apwg_report_dec_2007.pdf.

[4]	 H. Aradhye, G. Myers, J. Herson. "Image analysis for efficient
categorization of image-based spam e-mail". Document
Analysis and Recognition, 2005. Proceedings. Eighth
International Conference on, 2:914–918, 29 Aug.-1 Sept.
2005.

[5]	 N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, J. Mitchell.
"Client-side defense against web-based identity theft". In
11th Annual Network and Distributed System Security
Symposium (NDSS ’04), San Diego, 2005.

[6]	 R. Dhamija, J. D. Tygar. "The battle against phishing: Dynamic
security skins". In Proceedings of the 2005 symposium on
Usable privacy and security, New York, NY, pages 77–88.
ACM Press, 2005.

[7]	 P. Mutton. "Italian Bank’s XSS Opportunity Seized by
Fraudsters". Technical report, Netcraft, Jan. 2008. [Online]
Available :http://news.netcraft.com/archives/2008/01/08/
italian_banks_xss_opportunity_seized_by_fraudsters.html.
33

[8]	 E. F. Krause. "Taxicab geometry". 1987.
[9]	 V. I. Levenshtein. "Binary codes capable of correcting

deletions, insertions, and reversals". Soviet Physics Doklady,
10:707–710, 1966.

[10]	A. Rosiello, E. Kirda, C. Kruegel, F. Ferrandi. "A Layout-
Similarity-Based Approach for Detecting Phishing Pages".
In IEEE International Conference on Security and Privacy
in Communication Networks (SecureComm), 2007.

[11]	L.Wenyin, G. Huang, L. Xiaoyue, Z.Min, X. Deng. "Detection
of phishing webpages based on visual similarity". In 14th
International Conference on World Wide Web (WWW):
Special Interest Tracks and Posters, 2005.

[12]	R. Stankovic, B. Falkowski. "The Haar wavelet transform:
its status and achievements". Computers and Electrical
Engineering, 29:25–44, 2003.

[13]	Microsoft. "Sender ID Home Page". [Online] Available :
http://www.microsoft.com/mscorp/safety/technologies/
senderid/default.ms%px, 2007.

[14]	Chun-Ying Huang, Shang-Pin Ma, Wei-Lin Yeh, Chia-
Yi Lin1, Chien-Tsung Li, "Mitigate Web Phishing Using
Site Signatures". Department of Computer Science and
Engineering, National Taiwan Ocean University.

 412  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

