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Abstract
Phishing is a current social engineering attack that results in online 
identity theft. Phishing Web pages generally use similar page 
layouts, styles (font families, sizes, and so on), key regions, and 
blocks to mimic genuine pages in an effort to convince Internet 
users to divulge personal information, such as bank account 
numbers and passwords. A novel technique to visually compare an 
assumed phishing page with the legitimate one is presented. Five 
important features such as signature extraction, text pieces and 
their style, images, URL keywords and the overall appearance of 
the page as rendered by the browser are identified and considered. 
An experimental evaluation using a dataset collected of 150 real 
world phishing pages, along with their equivalent legitimate targets 
has been performed. The investigational results are satisfactory 
in terms of false positives and false negatives and an efficiency 
rate of about 98.11% for false positive pages and 92.95% for false 
negative pages has been obtained. 
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I. Introduction
The underlying assumption of this system is that a phishing page 
aims to mimic the appearance of the targeted, legitimate page. 
Thus, when two pages are similar, and the user is about to enter 
information associated with the first page on the suspicious, second 
page, an alert should be raised. When the two pages are different, 
it is unlikely that the second page tried to spoof the legitimate site, 
and thus, the information can be transmitted without a warning. 
Whenever a suspected phishing email is found, the potential 
phishing URL is extracted from the email. Then, the corresponding 
legitimate page is obtained, using a search engine or, based on 
keywords, selecting among a predefined set of registered pages. 
Finally, a comparison is initiated and, if the outcome is positive, 
the email is blocked. To compare a target page (i.e., suspected 
page) with a legitimate page, four steps [1] are required:

Fig. 1 : Block diagram of the process

1. 	 Retrieve the suspicious web page w.
2. 	 Transform the web page into a signature S (w).
3. 	 Compare S (w) with the stored signature S (w´) of the 

supposed legitimate page w´ (i.e., the page targeted by the 
phishing page).

4. 	 If the signatures are “too” similar, raise an alert.
Steps 2 and 3 represent the main aspect of this paper. We discuss 
these steps in detail in the next two subsections. The actual 
implementation of Step 4 depends on the specific application 
scenario in which the approach is used. For example, in Antiphish, 
raising an alert implies that the submission of sensitive data is 
canceled and a warning is displayed to the user.

II. Existing Approach

A. Antiphish
AntiPhish [5] is a browser plug-in that keeps track of sensitive 
information. Whenever a user attempts to enter sensitive 
information on one site, and this information has previously been 
associated with a different, trusted site, a warning is generated. 
This is effective when a user inadvertently enters bank login 
information on a phishing site. However, AntiPhish suffers from 
the problem that legitimate reuse of credentials is also flagged 
as suspicious.

B. DOM Antifphish 
To address the usability problem of Antiphish, DOM AntiPhish 
[10] was proposed. For that approach, the authors compared the 
Document Object Models (DOMs) of the pages under analysis to 
determine whether the two pages are similar. When information 
is reused on a page that is similar to the original page (that is 
associated with the sensitive data), a phishing attempt is suspected. 
When the information is entered on a site that is completely 
different, the system assumes legitimate data reuse. Although 
DOM AntiPhish is able to identify phishing pages effectively, its 
major limitation is that the DOM tree is not necessarily a reliable 
feature to establish similarity between pages. In some cases, it is 
possible for the attacker to use different DOM elements to create 
a similar look-and-feel and appearance of a page. Furthermore, a 
phishing site that only consists of images cannot be detected.

III. Implemented System
A typical phishing attack may be based on several techniques, 
including   exploiting browser vulnerabilities or performing 
man-in-the middle attacks using a  proxy. However, the most 
straightforward and widespread method consists of deploying a 
web page that looks and behaves like the one the user is familiar 
with. In this paper, an effective approach to detect phishing 
attempts by comparing the visual similarity between a suspected 
phishing page and the legitimate site that is spoofed is presented. 
When the two pages are “too” similar, a phishing warning is raised. 
In this system, three features to determine page similarity: text 
pieces (including their style-related features), images embedded 
in the page, and the overall visual appearance of the page as seen 
by the user (after the browser has rendered it) are considered. The 
similarity between the target and the legitimate page is quantified 
by comparing these features, computing a single similarity score. 
A comparison based on page features that are visually perceived 
is performed. This is because phishing pages mimic the look-and-
feel of a legitimate site and aim to convince the victims that the 
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site they are visiting is the one they are familiar with. Once trust 
is established based on visual similarity, there is a higher chance 
that the victim will provide her confidential information. Typically, 
a victim’s visual attention focuses both on the global appearance 
of the page and on salient details such as logos, buttons, and 
labels. In fact, these observations are supported by both common 
sense and literature. For example, Dhamija et al. [5] show that 
about one in four users base their trust only on page content (i.e., 
images, page design, colors) to decide whether the page is 12  
legitimate or not. Obviously, these users are the ones that are most 
prone to fall victim to a phishing attack. This paper implements 
the phishing detection technique that is based on the similarity 
between the legitimate page and the phishing page based on its 
characteristics such as text components, image elements and overall 
appearance [13].  

A. Description of the implemented System
One possible application scenario for the implemented system 
is to integrate the visual similarity detection scheme into the 
open source tool AntiPhish. AntiPhish tracks the sensitive 
information of a user and generates warnings whenever the user 
attempts provide this information on a web site that is considered 
to be un-trusted. It works in a fashion similar to a form-filler 
application. However, it not only remembers what information 
(i.e., a username, password pair) a user enters on a page, but it also 
stores where this information is sent to whenever a tracked piece 
of information is sent to a site that is not in the list of permitted 
web sites, AntiPhish intercepts the operation and raises an alert. 
Although simple, the approach is effective in preventing phishing 
attacks. Unfortunately, when a user decides to reuse the same 
username, password pair for accessing different online services, 
too many undesired warnings (i.e., false positives) are raised. By 
integrating the comparison technique into the existing AntiPhish 
solution, AntiPhish can be prevented from raising warnings for 
sites that are visually different. The underlying assumption is that 
a phishing page aims to mimic the appearance of the targeted, 
legitimate page. Thus, when two pages are similar, and the user 
is about to enter information associated with the first page on 
the suspicious, second page, an alert should be raised. When the 
two pages are different, it is unlikely that the second page tried 
to spoof the legitimate site, and thus, the information can be 
transmitted without a warning. 14 Of course, this technique can 
also be used in other application scenarios, as long as a baseline 
for the suspicious page is available. That is, it needs to know 
what the legitimate page looks like so that comparison can be 
made against it. For example, the approach could be part of a 
security solution that works at the mail server level. Whenever 
a suspected phishing email is found, the potential phishing URL 
is extracted from the email. Then, the corresponding legitimate 
page is obtained, using a search engine or, based on keywords, 
selecting among a predefined set of registered pages. Finally, a 
comparison is initiated and, if the outcome is positive, the email 
is b locked. To compare a target page (i.e., suspected page) with 
a legitimate page, four steps are required: 
1.	 Retrieve the suspicious web page w.
2.	 Transform the web page into a signature S (w).
3.	 Compare S (w) with the stored signature S (w´) of the 

supposed legitimate page w´ (i.e., the page targeted by the 
phishing page).

4.	 If the signatures are “too” similar, raise an alert. Steps 2 and 
3 represent the core techniques. These steps are discussed in 
detail in next two subsections. The actual implementation of 
step 4 depends on the specific application scenario in which 

the approach is used. For example in Antiphish, rising an alert 
implies that the submission of sensitive data is canceled and 
a warning is displayed to the user. 

1. Signature Extraction
A signature S (w) of a web page w is a quantitative way of capturing 
the information about the text and images that compose this web 
page. More precisely, it is a set of features that describe various 
aspects of a page. These features cover,
(i) 	 Each text section with its attributes,
(ii) 	 Each visible image, 
(iii) The overall visual look-and feel (i.e., the larger composed 

image) of the web page visible in the viewport1. The 
following paragraphs describe in more detail the features 
that this system extracts from a web page.

2. Text Elements
A text element is a visible piece of text on the web page that 
corresponds to a
leaf text node in the HTML DOM tree. For each piece of text, 
extract:
i. 	 Its textual content,
ii. 	 Its foreground color,
iii. 	 Its background color,
iv. 	 Its font size,
v. 	 The name of the corresponding font family, and
vi. 	 Its position in the page (measured in pixel starting from the 

upper left corner).

Thus, for each text element, obtain a 6-tuple t that is called text 
tuple. The signature of the page contains a vector t0. . . tn of k 
tuples, where each of the k tuples represents one visible piece of 
text on the web page. Using JavaScript the Background color can 
be extracted using, this. 

getActualBackgroundColor = function(node)
{var bgcolor; if (node.nodeName==”#document”)
{bgcolor = node.bgColor;}
e l s e { i f ( n o d e . o w n e r D o c u m e n t . d e f a u l t Vi e w. g e t 
ComputedStyle(node, null)) 
bgcolor = node.ownerDocument.defaultView.get ComputedStyle 
(node, null).getPropertyValue
(“background-color”);
if (bgcolor == “transparent”) {bgcolor = this.get Actual 
BackgroundColor(node.parentNode);}
else {bgcolor = this.getActualBackgroundColor(node.
parentNode);}
{return bgcolor;}}

Fig. 2 : Extracting Code  

3. Image Elements
For each visible image of the web page, the following attributes 
are extracted:
i. 	 The value of the corresponding src attribute (i.e., the source 

address of the image),
ii. 	 Its area as the product of width and height, in pixel,
iii. 	 Its color histograms,
iv. 	 Its 2D wavelet transformation, and
v. 	 Its position in the page.

Thus, for each image element on the page, 5-tuple I, image tuple 
is obtained. The signature S (w) contains a vector i0. . . im of 
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tuples, where each tuple represents one visible image on the web 
page.  To extract a color histogram from an image proceeds as 
follows: First, obtaining a square image of l × l pixels, the image 
is resized. For the image elements, set l = 128.
In case the image width w and height h are both lower than l, adjust 
the size to obtain a square image of 2k×2k, where k is the greatest 
value for which 2k ≤ w and 2k ≤ h. The resize operation leverages 
a built-in function in Firefox that is able to adjust images to fit 
into rectangles of arbitrary dimensions. It is done for performance 
reasons, so that the following computations can be executed faster. 
Using the scaled image, the second step is to compute the histogram 
of the RGB components, using n histogram cells. For the image 
elements, n = 5. This is done for all three colors in the RGB color-
space. For example, consider the red component and 5 histogram 
cells. Count the number of pixels whose red component value is 
in the range [0, 50] (recall that each color channel has 8 bits) to 
obtain the first red histogram bar, the number of pixels whose 
red component value is in the range [51, 101] for the second bar, 
and so on; finally, normalizing the bar values such that their sum 
is equal to 1.The 2D wavelet transformation [12] is an efficient 
and popular image analysis technique that, essentially, provides 
low-resolution information about the original image. It can be 
calculated in O (n) time, where n is the size of a square, grayscale 
image. The wavelet transformation operates on the scaled, square 
image, which is obtained as described previously. In the first step, 
this image is converted into grayscale version. Then, compute 
the 2D wavelet transformation and take the first m×m wavelet 
coefficients at the low-resolution end of the matrix. For image 
elements, a value of m = 8 is used.

4. URL keywords 
Detecting phishing page is to be redirected to the correct one 
instead of providing hints to users. Since users are not always 
aware of alerts that displayed by anti- phishing toolbars. It would 
be better if URL redirections are enforced when the accuracy of 
detection rates is good enough and the error rate is limited

5. Overall appearance
Finally, the overall image corresponding to the viewport of the 
web page as rendered by the user agent (i.e., the upper left portion 
of the rendered web page that fits a browser window maximized 
on a typical display is considered. In this case, a screen resolution 
of 1280 × 800 pixels) is used. For this image, color histograms 
and its 2D wavelet transformation is extracted. For the overall 
appearance, a single pair o that is called overall image tuple 
is obtained, which represents the overall visual image of the 
web page. The color histogram and the wavelet transformation 
computation are performed in the same way as for the individual 
image elements. To capture the overall appearance image with 
higher precision, the features on a larger image are computed. 
That is, l = 256 is used, meaning that the size of the scaled-down 
image is 256 × 256 pixels. Also, the number of cells for the color 
histogram is increased to n = 8, and m = 16 wavelet coefficients 
is selected. 

IV. COMPARISION

A. Page signature
Once the features that capture the overall appearance of a page 
and each of its text and image elements are extracted, this page’s 
signature S(w) is stored. The signature is simply the set of all text 
tuples, image tuples, and the overall image tuple:
S(w) = t0, . . . , tn, i0, . . . , im, oi. 

B. Signature Comparision
Once two signatures S(w) and S(w´) are available, the similarity 
score between the corresponding web pages w and w´ is computed. 
To this end, start by comparing pairs of elements from each page. 
Of course, elements are only compared with matching types (e.g., 
text elements are only compared with other text elements). 
That is, all pairs of text elements are compared to obtain a similarity 
score st. Then, all image pairs are compared to obtain a similarity 
score si. Finally, the overall appearances of the two pages are used 
to derive a similarity score so. Using these three scores, a single 
similarity score s [0, 1] is derived that captures the similarity 
between the pages w and w´. 

1. Text elements
Concerning the text elements, the comparison is done as follows. 
For each pair of text tuples ti of S(w) and tj´ of S(w´), the following 
computation is performed: 
• 	 The similarity between the two textual contents T and T´ is 

given as: 1 − dl (T, T´) (3.1)
	 Max (length(T)), length(T´)
	 where dl (T, T´) is the Levenshtein distance [10] between T 

and T’
• 	 The similarity between the two foreground colors C and C´ 

is given as:
	 1 − 1 (3.2)    (3·255) L1(C, C´)
	 where L1 is the 1-norm distance (also known as Taxicab 

metric or Manhattan distance
	 [9]) between the colors expressed as 8-bit RGB points
	 (i.e., L1(C, C´) = |r − r´| + |g − g´| + |b −b´|) (3.3)
• 	 The similarity between the two background colors are 

computed, in the same way as above
•	 The similarity between the two font sizes F and F´, is 

expressed in pixel, as
	 1 − |F− F´| (3.4)     max(F, F´)
• 	 The similarity between the names of the two font families 

are computed, setting 0 if they are equal, 1 otherwise
• 	 The similarity between the two positions in the pages is given 

as  1 − d (3.5)

where d is the Euclidean distance between the two points and 
Md is the maximum Euclidean distance between two points in 
a viewport of 1280 × 600 resolution. Note that all the obtained 
similarities are in the range [0, 1], where 0 means no similarity 
and 1 means total match. The sum the 6 individual similarities 
scores is found using the weights (4/15), (4/15), (2/15), (2/15), 
(2/15), (1/15) (Whose sum is equal to 1), and obtain the similarity 
st i,j between ti and tj´ The weights were manually chosen based 
on the domain knowledge and the assessment of the importance 
of the corresponding features to the visual similarity between two 
text blocks. These weights only serve as a rough estimate for the 
different impact of features. Clearly, the content of the text and 
the text color are more important than the used font family. This 
intuition is reflected by the weights. The actual values have not 
been optimized, and it might be possible to further improve this 
system by tuning the weights. Once similarity score between all 
pairs of text elements are obtained, it is stored in a similarity 
matrix St. This matrix stores, for each pair of elements ti and tj´, 
the similarity between these two elements. The dimension of the 
matrix is n × m, where n is the number of text elements on page 
w and m is the number of text elements on w´. 
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<html> <h1 style=”color:rgb(255,0,0);”>Home 
banking</
h1>
<p>Welcome!</p>
<p>Copyright 2007</p>
</html>
and:
<html>
<center>
<h1 style=”color:red;”>Your banking</h1>
<p style=”color:gray;”>Welcome!</p>
</center> </html>

    
Fig. 3 : HTML Coding for background extraction

As an example, suppose the textual parts of two pages whose 
corresponding HTML documents compared are shown in fig. 3.

The corresponding text tuples are, respectively:
t1 = {Home banking, (255, 0, 0), (255, 255, 255), 32, Serif, (8, 
8)}
t2 = {Welcome!, (0, 0, 0), (255, 255, 255), 16, Serif, (8, 66)}
t3 = {Copyright 2007, (0, 0, 0), (255, 255, 255), 16, Serif, (8, 
102)}
and:
t1´ = {Your banking, (255, 0, 0), (255, 255, 255), 32, Serif, (8, 
21)}
t2´ = {Welcome!, (128, 128, 128), (255, 255, 255), 16, Serif, (8, 
80)}

The system first compares each pair of text elements, computing 
a similarity score. For the tuples t1 and t1´, this yields:
St 1, 1 = (4/15)0.75+ (4/15)1+ (2/15)1+ (2/15)1+ (2/15)1+ 
(1/15)0.98375= 0.93225 When the computation is performed 
for each pair, the similarity matrix St can be determined. In this 
example, this is the following 3 × 2 matrix:
 	 0.9322500 0.5493813      			    (3.6)
St   =	 0.5740278 0.8649771
 	 0.6062897 0.5948105

2. Image elements
Concerning the image part, the comparison is done as follows. 
For each image tuple ii of S(w) and for each image tuple ij´ of 
S(w´):  • The similarity between the two src attributes using the 
Levenshtein distance is computed, as above; 23 • The similarity 
between the two image areas A and A´, expressed in pixels, is 
given as 

1− |A−A´| (3.7) max(A,A´)

• 	 The similarity between the two matrices representing the 
color histograms C and C´ as 1 − L1(C, C´) is computed, 
using the 1-norm distance 

• 	 The similarity between the two matrices representing the 
2D wavelet transformations is computed, using the 1-norm 
distance as above 

• 	 The similarity between the two positions in the pages is 
computed, as described previously for text tuples. Again, all 

similarities are in the range [0, 1]. Then sum these similarity 
values, using the weights (4/11), (2/11), (2/11), (2/11), (1/11). 
The result is the distance si i,j between ii and ij´ . Based on 
these distance values, a similarity matrix Si that captures 
the similarity between the image elements of S(w) and 
S(w´) is derived. Again, the weights are set according to 
the assessment of the visual impact of each feature.

3. URL Keywords
URL is a common feature to detect phishing sites because attackers 
often tries to confuse users by embedding strings similar to the 
domain name of the targeted website in phishing URLs. Hence, we 
extract URL keywords as parts of the signature from the domain 
name of a valid website. 
Not all words appeared in a domain name are extracted as keywords. 
To extract keywords from a domain name, we first split words in 
the domain name by the dot symbol. Then, we remove top level 
domains (TLDs) and country-code top level domains (ccTLDs). 
Common words used in domain, for example, www and mail, 
are removed [14].

4. Overall appearance
Finally, concerning the appearance of the overall image, similarity 
in terms of color histograms and of 2D wavelet transformations is 
computed, in the same way as described previously for images. The 
similarity index so as the average of the two values is obtained.

5. Individual similarity scores
To obtain a similarity score s from a similarity matrix S (st for 
the text matrix St and si for the image matrix Si), average the 
largest n elements of the similarity matrix. The largest n elements 
of the matrix are selected using the following iterative, greedy 
24 algorithm: 
(i)	 select the largest element of the matrix
(ii)	 discard the column and the row of the selected element. 

These steps are repeated until a number n of elements are 
selected or the remaining matrix is composed of either no 
rows or no columns. Then, n = 10 is set for the text similarity 
matrix and n = 5 for the image similarity matrix. In other 
words, the n most matching items (either among text blocks 
or among images) are extracted between the two web pages 
under comparison, avoiding considering an item more than 
once.

Consider the average of the greatest n values in the matrix instead 
of considering the whole matrix in order to avoid the case in 
which the comparison outcome is influenced mainly by many 
non-similar elements rather than by few, very similar elements 
(which are typically the ones that can visually lure the user). For 
example, consider a phishing page in which there are very few 
images (e.g., the logo and a couple of buttons) that are very similar 
to the ones in the legitimate page. Also, imagine that there are a 
large number of graphical elements, possibly small and actually 
rendered outside of the viewport, which are not present in the 
original page; if the average over the entire matrix elements are 
taken, the outcome would be biased by the low similarity among 
the many dissimilar elements. However, the user would be tricked 
by the few elements that are very similar.

6. Final similarity score 
The final outcome of a comparison between two signatures is the 
similarity scores. This score is obtained based on the individual 
scores for text and image elements, as well as the overall 
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appearance: s = at st + ai si + ao so. When s is large, the two 
pages are similar. A threshold t is used in order to discriminate 
between the two cases: w and w´ are considered similar if and 
only if s ≥ t, not similar otherwise. In this paper text, image and 
overall appearance are considered for comparison.

V. Implementation and Result Analysis 

A. Experimental Evaluation
A dataset that consists of negative and positive pairs of web pages. 
For the positive pairs, pairs of real-world legitimate pages and 
corresponding phishing pages are selected. The phishing pages 
are obtained from the PhishTank public archive (http://www.
phishtank.com). For each phishing page, the corresponding 
legitimate page is retrieved by visiting the web site of the spoofed 
organization immediately after the attack appeared on Phish Tank. 
To build the negative part of the dataset, a number of common 
web pages are collected, unrelated to the legitimate ones. Then 
the set of positive pairs are partitioned into three subsets, based 
on their visual similarity. That is, three levels of dissimilarity are 
defined as perceived by a human viewer who manually looks and 
compares a legitimate web page and the corresponding phishing 
page. Each subset is denoted with a dissimilarity level label: 
Level 0 identifies pairs with a perfect or almost perfect visual 
match. Level 1 identifies pairs with some different element or 
with some minor difference in the layout. Level 2 identifies pairs 
with noticeable differences.
The partition positive pairs are chosen into different subsets for the 
following reason: The majority of phishing pages exactly mimic 
the appearance of the legitimate page. This is not surprising, as 
the miscreants do not wish to raise suspicion. However, there are 
also cases where visual differences do exist. These differences may 
be simply due to the poor skills of the attacker (e.g., mistakes in a 
text translated to a foreign language). However, some differences 
may be voluntarily inserted, both at the source level and at the 
rendering level. This could be done to evade anti-phishing systems, 
while, at the same time, keeping the look-and-feel as close to the 
original web page as possible. Similar 26 evasion techniques are 
sometimes used by spammers for image-based spam [2]. 
That is, although some randomized alterations are applied to the 
original image, from the user’s point of view, the image remains 
identical. The negative pairs set are partitioned into two subsets. 
One subset consists of web pages with a login form. The second 
one has no such forms. The pages in the first subset mainly selected 
from Internet banking web sites. The second subset was chosen 
by performing a manual selection of pages, aimed at obtaining 
a heterogeneous and random sample set varying in size, layout, 
and content. 
A substantial portion of pages are chosen with a login form to make 
the experiments more realistic and challenging. This is because 
pages that   maintain a login form are more likely to be compared 
against legitimate pages when trying to detect phishing pages. The 
results obtained are illustrated in the Fig.s shown below. 

Fig. 4: Text Comparison

Fig. 5 : Image Comparison

Fig. 6 : Overall Appearance

Fig. 7 : Output page for phishing website
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Fig. 8 : Output page for legitimate website

B. Result analysis
For this experiment, the test set was composed of 180 positive 
pairs (85 of Level 0, 47 of Level 1, and 48 of Level 2). 

Table 1 : Result analysis
Levels False 

Positives
Fake 
Positive 
Rate

False 
Negatives

False 
Negative 
Rate

All (0,1 
and 2) 48

2 1.1 1 2.08%

Only 0 
and 1    
47

1 0.1 1 2.08%

Only 0              
85

1 0.1 1 2.08%

Table 1 summarizes the results of the tests. It can be seen that this 
approach detects all phishing pages classified as Level 0 and 1, 
while it fails to detect 2 out of 180 positive pairs of Level 2. Hence, 
an overall false positive rate (FPR) equal to 1.11% and an overall 
false negative rate (FNR) equal to 2.08%. Here the verification is 
done, by visual inspection that those pairs were indeed difficult 
to detect by this visual similarity-based approach.

In general, the choice of t depends on the desired tradeoff between 
possible false positives and possible false negatives. Hence, it 
depends on the context in which the proposed approach is 
supposed to be deployed. For example, if the comparison approach 
is implemented as part of the AntiPhish tool, it may be preferable 
to select lower values for t. The reason is that when using the 
visual comparison component with AntiPhish, a large number of 
possible false positives is already filtered out, since the comparison 
is invoked only when a user’s known credentials are about to be 
transmitted to an untrusted web site. Therefore, the comparison 
may be relaxed towards accepting more false positives (warnings) 
in favor of avoiding missed detections. 

Fig. 9 : Comparison of three levels

Finally, the average computation time for comparing two pages 
is measured as shown in the Fig. 4.6. Note that such an operation 
involves both the signature extraction and the signature comparison 
phase. In this experimental analysis comparison phase is focused. 
The extraction phase consists mainly of retrieving information 
which, in practice, is already available to the browser that has 
rendered the page. Moreover, the legitimate page signature is 
typically extracted once at a previous point in time. 

In this experiment, it took about 3.8 seconds for positive pairs 
and about 11.2 seconds for negative pairs to be compared. The 
key idea to improve performance is to execute the comparison 
operations in an order such that the most expensive operations 
are executed last. 

In particular, during the similarity index computation (either st, 
for the text section, or si, for the images), the n (with n = 10 
for the text part and n = 5 for the image part) similarity values 
are kept for the most similar pairs of tuples found so far. When 
evaluating a new pair of tuples, the evaluation can be stopped once 
it determine that this pair cannot exceed the similarity values of one 
of the top n pairs, even if all remaining features comparisons yield 
perfect similarity. For example, suppose that: (i) a pair of images 
is considered, (ii) the distance is computed in terms of positions 
on the page and image sizes, and (iii) the distances are such that 
with the given weights, the corresponding matrix element will be 
lower than the 5th retest element of the matrix. In this case, no 
need to compute, or extract, the two Haar transformations or the 
Levenshtein distances. Once it is determine that, after looking at 
the score for the overall appearance, two pages cannot exceed the 
similarity threshold t, then no need to compute any of the two 
similarity matrices for the text and image elements. This results 
in impressive speeds-ups. A negative comparison between two 
pages is produced in a few milliseconds.

VI. Conclusion
Phishing has becoming a serious network security problem, 
causing financial loss of billions of dollars to both consumers and 
e-commerce companies. Phishing has made e-commerce distrusted 
and less attractive to normal consumers.  The characteristics of the 
web similarity that are exploited in phishing pages are studied. 
In this paper, an effective and novel approach to detect phishing 
attempts by comparing the visual similarity between a suspicious 
page and legitimate target page has been presented. 

When checking for visual similarity, five page features: signature 
extraction, text pieces and their style, images embedded in the 
page, URL keywords and the overall visual appearance of the web 
page as rendered by the browser are considered. Features that are 
visually perceived by users are considered because, as reported in 
literature, victims are typically convinced that they are visiting a 
legitimate page by judging the look-and-feel of a web site. 

A dataset consisting of 150 real phishing pages with their 
corresponding target legitimate pages are considered. The results, 
in terms of false alarms and missed detection, are satisfactory. 
1% false positives were raised and only 2.08% false negatives 
were calculated.
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