
Abstract
A test oracle in software testing is a mechanism for verifying
whether the component under test behaves correctly for any
execution. In some cases the oracles are unavailable or too difficult
to apply. Fault based testing is used to fig. out the test set problem.
In this paper we present the basic concept of metamorphic testing
and extensible fact of testing any program.

Keywords
Metamorphic testing, metamorphic relation, test cases.

I. Introduction
It is a non practical task, to test the program with all conceivable
inputs. The task and computations to find the faults are very much
expensive. Instead we should focus on those test cases which
reveal faults in the program. One of major limitation of software
testing is oracle problem. An oracle is a mechanism against which
we can decide whether the outcome of the program is correct or
not. In certain cases it is very difficult or impractical to verify
the correctness of the output of the program [1, 2]. On the other
hand, when the oracle is available, if it is a human tester, the
manual predictions and comparisons of the test results are often
time consuming and error prone. Fault based testing on successful
execution of program indicates the absence of faults. But this is
not the true factor always.
At this stage, metamorphic testing can be carried out to generate
follow-up test cases based on existing test cases that have not
revealed any failure. A metamorphic relation (MR) is an expected
relation among the inputs and outputs of multiple executions of
the target program. In this paper we present the basic concept
of metamorphic testing and how it effects the results testing of
trigonometric component.

II. Metamorphic Testing
Metamorphic testing is proposed to alleviate the oracle problem. Its
concept is simple and its automation is easy. Metamorphic testing
is a program testing technique that employs the mathematical
relations, namely metamorphic relations, to conduct testing [3].
Metamorphic testing involves multiple executions of the program
under test. Outputs of these multiple executions and their computed
outputs are expected to satisfy some necessary properties of the
relevant algorithm if the implementation is correct. Such necessary
properties are called metamorphic relations [4].

A. Metamorphic Relation
Metamorphic testing generates follow-up test cases by making
reference to “metamorphic relations”(MR). For program p, an
MR is a property of its target function f . The unique character of
MR is that it involves multiple executions [5, 8]. A metamorphic
relation, is an existing or expected relation over a set of distinct
inputs and their corresponding outputs for multiple executions of
the target function. For example, consider two inputs cos 16.3°
and cos 376.3°. When we have to implement the program for cos,
we have in knowledge that cos 16.3° = cos 376.3°. Because cos
376.3° = cos 360° + cos 16.3°. And cos function have periodic
nature with respect to 360°.

B. Concept of oracle
An oracle is a mechanism against which people can decide whether
the outcome of the program on test cases is correct. An oracle is
a mechanism used by software testers and software engineers
for determining whether a test has passed or failed. It is used by
comparing the output(s) of the system under test, for a given test
case input, to the outputs that the oracle determines that product
should have.
Common oracles include:
•	 Specifications and documentation.
•	 An oracle for a software program might be a second

program that uses a different algorithm to evaluate the same
mathematical expression as the product under test.

•	 A consistency oracle that compares the results of one test
execution to another for similarity

•	 A human being's judgment (i.e. does the program "seem"
to the user to do the correct thing?

III. Why Trignometry?
There are an enormous number of uses of trigonometry and
trigonometric functions. For instance, the technique of triangulation
is used in astronomy to measure the distance to nearby stars,
in geography to measure distances between landmarks and in
satellite navigation systems [5,7]. Fields that use trigonometry
or trigonometric functions include(on the oceans, in aircraft,
and in space) acoustics, optics, electronics, probability theory,
statistics, biology, medical imaging (CAT scans and ultrasound),
pharmacy, chemistry, number theory (and hence cryptology),
seismology, meteorology, oceanography, many physical
sciences, land surveying and geodesy, architecture, phonetics,
economics, electrical engineering, mechanical engineering, civil
engineering, computer graphics, cartography, crystallography
and game development [5,6]. And the most common way to test
trigonometric component is to put values and verify the output
with the expected value. This still doesn’t make sure that the
function will deliver the accurate result. To overcome this we use
metamorphic testing [7].

IV. Metamorphic Testing of Trignometric Function
We will first insert a mutant in trigonometric function and then
test the trigonometric function using special value testing and
also by using metamorphic testing, and will verify the results that
which technique is able to find the faulty program. We use a well
known function of trigonometry i.e a cosine function. Consider
a program p which implements the cosine function, cos(θ). The
cos function f has a number of well known special test formulas
that can be used in the testing of p. Test data and corresponding
expected results are expressed in form of (θ, cos(θ)). Special
values used in the testing are the following elements {(0, 0), (π/6,
√3/2), (π/4, √2/ 2), (π/3, 1 /2), (π/2, 0)}.
We will take a program P which exactly calculates cosine function.
And will insert a fault in program, and the faulty program will be
called as FP. The faulty program FP will be used to examine that
special value testing is not adequate for testing the cosine function.
The fault introduced in the program is a little variation in the
program. In order to verify the program correctness metamorphic
testing is implemented using metamorphic relations. Various
metamorphic relations used in this program are:

Metamorphic Testing Effectiveness on Trignometry
 1Tarun Khosla, 2Sushil Garg

 1,2RIMT-IET, Mandi Gobindgarh, Punjab, India

 576  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

A) cos(x) = cosf(x)
B) cos(x) = cos(x+2*π)
C) cos(x) = -cos(X + π)
D) cos(x) = cos(2*π–x)
E) cos(x) + cos(y) + cos(z) – cos(x+y+z) =
2*Cos ((x+y)/2) * cos ((x-z)/2) + cos (π/2- (x+y+2z)/2) * cos
(π/2- (x+y)/2)
F) cos(x) * cos(x) = 1-cos(π/2-x) * cos(π/2-x)
G) cos(-x) = cos(x)

Although there are numerous faults that could be introduced into
the program, some of the faults produce errors that can easily be
detected using special test values in testing and hence has little
value in terms of demonstration. The following faulty program,
however, produces errors that cannot be detected through the use
of the defined special values and hence is considered a suitable
candidate for demonstration purpose. Table 1 shows the result of
faulty program executed after inserting the fault in the program
and tested using special value testing and metamorphic testing.
The first column lists the input test data set that includes special
test values as well as random test values. The second column,
fp(x) = expected result, is the result of testing fp using special
values to verify against expected results. All other columns from
third onwars (from A to G) are the results of testing by using
metamorphic relations. Metamorphic testing does not require
verification of the output of the sine function, that is cos(θ). The
result is a verification of the inherent relationship to yield true or
false as a result of examining the relationship A-G by multiple
executions of program p. Since a metamorphic relation should
always hold true for the given input domain D where test data set
T⊂D, therefore the program is faulty if any of the metamorphic test
fails. An entry of T in the table indicates that the relation holds true
and F indicates that the relation does not hold true Computations
of fp(x) using random test values as inputs cannot be verified using
special value testing. The results are listed to show that had these
random values been used, the fault in fp () could not have been
revealed. From the test results (shown in Table 1), a number of
very useful observations can be made. When special test values
are used to test the faulty program fp, all tests yield the expected
results. In other words, the fault that has deliberately been seeded
in the faulty program fp cannot be detected using the list of special
values. But through metamorphic testing, errors can be uncovered
using special values as test input. Metamorphic testing can be
carried out using random test values in addition to special test
values. Testers may freely select inputs randomly to test relation
A-G without having to have expected results for cos(θ). In a sense,
metamorphic testing provides a self-test mechanism based on the
inherent metamorphic relationship [1].
A single metamorphic relation may not sufficiently test fp, for
instance, A alone cannot detect any error using any of the special

values and random values. E detects errors with all test cases. It
uses the cosine function seven times in the relation and the repeated
invocations of the same function with different parameters provide
a higher chance of uncovering program faults since each invocation
with a different parameter could have different execution paths.
Relation A has not detected any error, whereas B detected errors
two number of times, in C case the error has been detected 4 times,
whereas in case E all the test cases detect errors. The implication is
that a metamorphic relation with more invocations of the function
is more likely to detect errors.
On the other hand, given a specific fault, the ability of each
metamorphic relation to detect the error is still depended on the
nature of the fault and the test cases. Metamorphic testing uses
a black box testing approach and it is not known before testing
is performed as to what type of errors it might detect, therefore
it is useful to perform metamorphic testing with all available
metamorphic relations. Finally, metamorphic testing has the
flexibility to use random test values as input and not be restricted
to only using special values.

V. Conclusion
This paper demonstrates the use of metamorphic testing.
Metamorphic testing can reveal faults where special value testing
cannot. The unique character of metamorphic testing is that it does
not require human involvement to generate follow-up test cases
and verify the test results and hence, it can be fully automated. We
have also highlighted several important issues that are critical to
the fault detection effectiveness of metamorphic California (2004).
testing. Like other testing approaches, metamorphic testing only
demonstrates the presence but not the absence of faults. In other
words, metamorphic testing does not prove the correctness of
the program and so it should be used in addition to other testing
methods such as special value testing. In conclusion, the objective
of this paper is to demonstrate that when special test values cannot
sufficiently test a program, metamorphic testing could provide
an effective way to complement the testing where test oracle is
lacking. This has been achieved by using simple programs with
strong metamorphic relationships.

Table 1 :	

FP(x) ecpected result =
Special test value A B C D E F G

0 T T T F T F T T

π/6 T T F F F F F T

π/4 T T T F F F F F

π/3 T T F F F F F F

π/2 T T T T T F T T

  International Journal of Computer Science and Technology  577

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCST Vol. 2, Issue 3, September 2011

References
[1] 	 Tsong Yueh Chen, Fei Ching Kuo, Ying Liu and Antony Tang,

“Metamorphic Testing and Testing with Special Values”,
[2]	 T.Y. Chen, F.C. Kuo, T.H. Tse, Zhi Quan Zhou, “Metamorphic

Testing and Beyond”, Computer Society Press, Los Alamitos,
[3]	 Zhi Quan Zhou k, D.H. Huang, T.H. Tse, Zongyuan Yang,

Haitao Huang, T.Y. Chen, “Metamorphic Testing and Its
Applications”, 8th International Symposium on Future
Software Technology (ISFST 2004).

[4]	 W. K. Chan, T. Y. Chen, Heng Lu, “Integration Testing of
Context-Sensitive Middleware-Based Applications:

	 a Metamorphic Approach”, International Journal of Software
Engineering and Knowledge Engineering.

[5]	 K.Y. Sim, W.K.S. Pao, C. Lin, “Metamorphic Testing Using
Geometric Interrogation Technique and Its Application”

[6]	 Arnaud Gotlieb, Bernard Botella, “ Automated Metamorphic
Testing”.

[7]	 W. K. Chan, W. K. Chan, Karl R. P. H. Leung, “ A Metamorphic
Testing Approach for Online Testing of Service-Oriented
Software Applications.

[8]	 Sami Beydeda, “Self-Metamorphic-Testing Components.
[9]	 Tsong Yueh Chen, “Metamorphic Testing: A Simple

Approach to Alleviate the Oracle Problem”, 2010 Fifth
IEEE International Symposium on Service Oriented System
Engineering.

 578  International Journal of Computer Science and Technology

IJCST Vol. 2, Issue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

