
IJCST Vol. 7, ISSue 3, July - SepT 2016 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 72 INterNatIONal JOurNal Of COmPuter SCIeNCe aNd teChNOlOgy

An Overview of Software Vulnerability Detection
1Yunfei Su, 2Mengjun Li, 3Chaojing Tang, 4Rongjun Shen

1,2,3,4School of Electronic Science and Engg., National University of Defense Tech., Changsha China

Abstract
Software vulnerability is the main cause of computer security
problems and software vulnerability detection is a research
hotspot recently. A lot of research has already been done regarding
detection techniques, models, tools and all of them are covered
in literatures. The main purpose of this paper is to provide a
comprehensive survey and analysis of past and current research
directions, including static analysis, fuzzing, taint analysis,
symbolic execution and hybrid methods. Besides, this paper also
provides an analysis and comparison of different tools and talks
about the future direction of this field.

Keywords
Software Vulnerability Detection, Static Analysis, Fuzzing, Taint
Analysis, Symbolic Execution

I. Introduction
With the development of technology, information systems are
widely used in our life, and software security tends to be of
great concern. The prevalence of software enforces the software
industry to think of how to build quality in. Software quality is
most related to the knowledge and experience of the developers.
Unfortunately, developers make mistakes that lead to vulnerable
and defect software. Exploited security vulnerabilities can cause
drastic costs, e.g., system crash or the modification of data. A high
proportion of all software security incidents is caused by attackers
who exploit vulnerabilities.
Software vulnerability is defined as a flaw in software systems
which causes a computer software or system to crash or produce
invalid output or to behave unintended way. Vulnerability detection
[1] is the process of confirming if a system contains flaws that
could be leveraged by an attacker to compromise the security of the
system or that of the platform the system runs on. In comparison
to other approaches to security, such as intrusion detection and
prevention, the focus of vulnerability detection is on identifying
and eventually correcting flaws, rather than detecting and blocking
attacks that exploit a flaw.
Identifying vulnerabilities and patching them is a widely applied
measure to evaluate and improve the security of software. Due
to the openness of modern software-based systems, applying
appropriate security techniques is of growing importance and
essential to perform effective and efficient vulnerability detecting.
Therefore, an overview of vulnerability detection techniques is of
high value both for researchers to evaluate and refine the techniques
and for practitioners to apply and disseminate them. This paper
fulfills this need and provides an overview of recent vulnerability
detection techniques. For this purpose, it first summarizes the
required background of vulnerability detection. Then, basics and
recent developments of vulnerability detection techniques applied,
i.e., static analysis, fuzzing, taint analysis, symbolic execution, as
well as hybrid methods are discussed. Finally, the tools released
for vulnerability detection are compared with their detection
techniques in a table.

II. Static Analysis
Static analysis is a way of analyzing the source code (or the binary

code) without actually executing programs, thus avoiding risks
linked to the execution of malicious programs. Static analysis
techniques can analyze all control flows of a program. Therefore,
static analysis approaches achieve, compared to dynamic test
approaches, a significant higher coverage of program under
analysis and, thus, produce a significant lower false negative rate.
In other words, if there is vulnerability in the application under test,
in most cases the analysis is able to find it. Mostly, static analysis
tools detect vulnerabilities by scanning the program source code, a
significant part of efforts in static vulnerability detection have been
directed towards analyzing software written in some high-level
language, such as C, C++, C#, Java, or PHP. It is a very effective
method for detecting programing related vulnerabilities early in
the software development life cycle.
Static analysis techniques make the detection process fast,
repeatable and can deal with various vulnerabilities. However,
the approximate nature of the results provided by static analysis
makes it difficult to eliminate false positives.
The techniques that can be used in static vulnerability detection
include lexical analysis, data flow analysis, abstract interpretation,
model checking.

A. Lexical Analysis
Lexical analysis is also called as grammar structure analysis [2]
or pattern matching or syntactic analysis. Flawfinder [3], ITS4
[4], PMD [5], RATS [6] and Findbugs [7] are based on lexical
analysis. lexical analysis divides the program into a tokenized
stream and searches for a predefined set of vulnerable functions
or patterns. For examples, lexical analysis can detect the use of
potentially insecure C functions, like strcpy(), strcat() etc.
The speed of lexical analysis is simple and fast. But, its drawback
is, this method may produce a massive amount of false positives.
It is because this method does very simple analysis and ignores
the flow of data through the program.

B. Data Flow Analysis
Data flow analysis is used in compilers to optimize programs.
It uses a control flow graph to check the possible set of values
calculated at various program points. Data flow analysis can also
be used in vulnerability detection. Jlint [8], Findbugs [7], Parfait
[9] are based on data flow analysis.

C. Abstract Interpretation
Abstract interpretation is introduced by Patrick Cousot and Radhia
Cousot[10] in1978. The abstract interpretation relies on the notion
of approximation. It is alsosometimes so called as a theory of
semantics approximation. According to this theory, all possible
values a variable can take on a certain program point can be
approximated by a set that can be compactly represented as an
interval. The notion of approximation in abstract interpretation
is defined by Galois connection and extrapolation is used for
ensuring the termination of cyclic systems [11]. Astree [12] and
Frama-C [13] are based on abstract interpretation.

D. Model Checking
The model checking is the automatic technique which helps

IJCST Vol. 7, ISSue 3, July - SepT 2016

w w w . i j c s t . c o m INterNatIONal JOurNal Of COmPuter SCIeNCe aNd teChNOlOgy 73

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

to check if the property holds for the given state of the model.
Usually, the inputs for model checkers which are expressed as
formulas of temporal logic are analyzed and checked to see if the
program properties are retained. In practice, sometimes it becomes
infeasible to check all the system states, for commercial software
having millions LOC and a state-explosion problem may arise.
CBMC [14], Java Pathfinder [15], SLAM [16], BLAST [17] are
based on model checking.

III. Fuzzing
Fuzzing or fuzz testing is a program testing technique that is based
on the idea offeeding random inpputs to a program until it crashes.
It was proposed in 1990 by Barton Miller at the University of
Wisconsin [18]. Since then, fuzz testing has been proven to be an
effective technique for finding vulnerabilities in software.
Data generation is the key to fuzzing, according to the data
generation methods, fuzzing can be categorized as random
fuzzing, mutation-based fuzzing, generation-based fuzzing and
direction-based fuzzing.
Random fuzzing is the simplest fuzz testing technique, a stream of
completely random input data is send to the program under test.
The input data can be sending as command line options, events,
or network packets. This type of fuzzing is, in particular, useful
for test how a program reacts on large or invalid input data. While
random fuzzing can find already severe vulnerabilities, modern
fuzzers do have a detailed understanding of the input format that
is expected by the program under test.
Mutation-based fuzzing is one type of fuzzing in which the fuzzer
has some knowledge about the input format of the program under
test: based on existing data samples, a mutation-based fuzzing
tools generated new variants, based on a heuristics, that it uses
for fuzzing. The mutation algorithm is the key to improve the
efficiency of fuzzing.
Generation-based fuzzing generates program inputs according to
some specifications. Compared to pure random-based fuzzing,
generation-based fuzzing achieves usually a higher coverage of
the program under test, in particular if the expected input format
is rather complex and has checksums.
Direction-based fuzzing use the program control flow to direct
the fuzzing, also called testcase generation fuzzing. SAGE [19]
is the type of Direction-based fuzzing. First, it constructs an
initial and valid input IN0, sends the input into program P, and
symbol execution engine observes P’s processes on IN0 and a
path constraint that is in the form of logical formulas; secondly, it
negates the path constraint encountered during execution, solves
new constraint by a constraint solver, and create a new input IN1
whose execution path is different from IN0’s; finally, it processes
IN1 in the same way with IN0 and repeats the previous three
procedures.
There are lots of research [20] and tools on fuzzing, such as Sulley
[21], SPIKE [22], Peach [23], Bestorm [24], Spider Pig [25] and
so on. State-of-the-art testing of large distributed systems often
relies in practice on fuzzing. Unfortunately, this approach suffers
from the fact that the space of possible inputs is extremely large
and the efficiency is low.

IV. Taint Analysis
During the process of taint analysis, no matter the data is malicious
or not but all the input data that comes from unknown and untrusted
sources are marked as tainted and traced to check if the tainted
input data is used at sink point, such as an API that converts string
data into executable code. A significant portion of today’s security

vulnerabilities are string-based code injection vulnerabilities,
which enable the attacker to inject data into dynamically executed
programming statements, which leads to full compromise of the
vulnerable execution context. Examples for such vulnerabilities
include SQL Injection and Cross-Site Scripting. The taint analysis
has two forms: dynamic or static.

A. Dynamic Taint Analysis
The approach used in dynamic taint analysis is to mark the data
originating from untrusted input as tainted. The analysis keeps
track of all the tainted data in the memory and when such data
is used in a dangerous situation, a possible bug is detected.
This approach offers the capabilities to detect most of the input
validation vulnerabilities with a very low false positive rate.
However there are some disadvantages when using dynamic taint
analysis. The execution of the program is slower because of the
necessary additional checks and the problems are detected only
for the executions path that have been executed until now (not for
all executable paths) which can lead to false negatives.
BitBlaze [26] a binary analysis platform which combines static
analysis techniques with dynamic analysis techniques, mixing
concrete and symbolic execution, system emulation and binary
instrumentation. One of the dynamic techniques implemented by
BitBlaze is taint analysis used for detecting overwrite attacks.
BuzzFuzz [27] an automated white box fuzzing tool which, unlike
standard fuzzing tools, uses dynamic taint tracing to automatically
locate regions of original input files that influence values used
at key program attack points. New input files are generated by
fuzzing the identified taint regions. Because it uses taint analysis
to automatically discover and exploit information about the input
file format, it is especially appropriate for testing programs that
have complex input file formats.

B. Static Taint Analysis
Static taint analysis is the technique used for detecting the over-
approximation of the set of instructions that are influenced by user
input. This set of tainted instructions is computed statically only
by analyzing the sources of the program. The main advantage for
static taint analysis is that it takes into account all the possible
execution paths of the program. On the other hand the analysis
may not be so accurate as the one performed dynamically because
the static analyzer does not have access to the additional runtime
information of the program.
Parfait [9] is a static multi-layered program analysis framework. It
uses static taint analysis in its preprocessing stages. The approach
used by Parfait is to reduce the taint analysis to a graph reachability
problem.

V. Symbolic Execution
Symbolic execution [28] is a technique used to exercise various
code paths through a target system. Symbolic execution works
as follows: instead of running the target system with concrete
input values, a symbolic execution engine replaces the inputs
with symbolic variables, that are initially allowed to be anything,
and then runs the target system. Whenever the system execution
branches based on a symbolic value (that depends on symbolic
inputs), the symbolic execution engine forks, following each
branch and adding constraints on the symbolic variable in the
branch node. Thus, each execution path through the target system
will have associated a set of constraints on the symbolic inputs that
need to be satisfied in order for the execution path to be feasible.
The set of constraints can be “solved”, generating a set of concrete

IJCST Vol. 7, ISSue 3, July - SepT 2016 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 74 INterNatIONal JOurNal Of COmPuter SCIeNCe aNd teChNOlOgy

inputs that would exercise the respective path.
While symbolic execution the number of feasible paths in a program
grows exponentially with an increase in program size which finally
leads to path explosion [29]. Another problem degrading symbolic
execution is environment interactions. Programs interact with
their environment by performing system calls, receiving signals,
etc. Consistency problems may arise when execution reaches
components that are not under control of the symbolic execution
tool [30].
Concolic execution[19, 31-32] is a hybrid program execution that
performs symbolic execution, along with a concrete execution
(with particular inputs) path. Starting with a concrete input,
concolic execution symbolically executes the program, gathering
input constraints from conditional statements encountered along
the way.
KLEE [29] is an open source symbolic execution tool to analyze
programs and automatically generate system input sets that achieve
high levels of code coverage. KLEE is specifically designed to
support the testing of applications that interact with their runtime
environment. KLEE was used to test the GNU Coreutils suite of
applications, which form the basis of the user environment on
many different UNIX like systems. KLEE’s symbolic execution
engine accepts programs that have been compiled to Low Level
Virtual Machine (LLVM) byte code which it then symbolically
executes with two goals. First, it attempts to touch every line
of executable code in the program. Second, at each potentially
dangerous operation, such as memory dereferencing, if any of the
possible input values can cause an error.
MAYHEM [33] is tool for automatically finding exploitable bugs
in binary programs in an efficient and scalable way. MAYHEM
introduces a novel hybrid symbolic execution scheme that combines
the benefits of existing symbolic execution techniques (both online
and offline) into a single system. Index-based memory modeling
is proposed in MAYHEM, a technique that allows MAYHEM to
discover more exploitable bugs at the binary-level.
S2E[30] is a platform based on symbolic execution for analyzing
the properties and behavior of software systems. The S2E platform
reuses parts of the QEMU virtual machine, the KLEE symbolic
execution engine, and the LLVM tool chain. S2E currently runs
on Mac OS X, Microsoft Windows, and Linux, it can execute
any guest OS that runs on x86, and can be easily extended to
other CPU architectures, like ARM or PowerPC. In S2E the path
explosion and environment interactions problems are alleviated
by selective symbolic execution.
AEG [34] introduced a fully automatic end-to-end approach for
automatic vulnerability exploit generation. A novel preconditioned
symbolic execution technique and path prioritization algorithms
for finding and identifying exploitable bugs are developed. AEG
analyzed 14 open-source projects and successfully generated 16
control flow hijacking exploits, including two zero-day exploits
for previously unknown vulnerabilities.

VI. Hybrid Method
Static analysis, such as lexical analysis, data flow analysis, abstract
interpretation, static taint analysis and model checking, can be
utilized to detect vulnerabilities in code without code execution.
It is a fast and scalable technique for scanning millions of lines
of code during the analysis and get a high coverage of code, but it
suffers the high false positives. Dynamic analysis, such as fuzzing,
symbolic execution, dynamic taint analysis, needs the code to be
run during analysis. It suffers state-explosion, high cost and low
coverage and efficiency problems, but it gets a low false positives.

It is a natural idea to combine them to complement each other.
Rawat et al. [35] present a hybrid approach for buffer overflow
detection in C code. The approach makes use of static and dynamic
analysis of the application under investigation. The static part
consists in calculating Taint Dependency Sequences (TDS)
between user controlled inputs and vulnerable statements. This
process is akin to program slice of interest to calculate tainted data-
and control-flow path which exhibits the dependence between
tainted program inputs and vulnerable statements in the code.
The dynamic part consists of executing the program along TDSs
to trigger the vulnerability by generating suitable inputs with a
fitness function.
SANTE (Static ANalysis and TEsting) [36] is tool for verification
of C programs. In SANTE heterogeneous techniques such as
abstract interpretation, dependency analysis, program slicing,
constraint solving and test generation are combined within one
tool. It can be used to detect the risks of division by zero, out-of-
bounds array access and some cases of invalid pointers.
FLINDER-SCA [37] proposed combined verification approach
to detect recent vulnerabilities at the source code level with
reasonable amounts of efforts and computing time. It includes
three steps. First, abstract interpretation and taint analysis are
used to detect potential vulnerabilities (alarms), then program
slicing is applied to reduce the initial program, and finally a
testing step tries to confirm detected alarms by fuzzing on the
reduced program. We describe the proposed approach and the
tool, illustrate its application for the recent OpenSSL/ HeartBeat
Heartbleed vulnerability.
SMASH [38] presented a unified framework for compositional
may-must program analysis and a specific algorithm. SMASH
was implemented using predicate abstraction for the may part
and using dynamic test generation for the must part. The key
technical novelty of SMASH is the tight integration of may and
must analyses using interchangeable not-may/must summaries.
Results of experiments with 69 Microsoft Windows Vista device
drivers show that SMASH can significantly outperform may-only,
must-only and non-compositional may-must algorithms.
Driller[39] is a hybrid vulnerability excavation tool which leverages
fuzzing and selective concolic execution in a complementary
manner, to find deeper bugs. By combining the strengths of the two
techniques, driller mitigates their weaknesses,avoiding the path
explosion inherent in concolic analysis and the incompleteness
of fuzzing. Driller evaluated 126 applications released in the
qualifying event of the DARPA Cyber Grand Challenge and shown
its efficacy by identifying the same number of vulnerabilities, inthe
same time, as the top-scoring team of the qualifying event.

VII. Comparison of Tools in Vulnerability Detection
In Table 1 we list the main tools developed for vulnerability
detection and mark the techniques they used, the code form they
detect. LA, DFA, AI, MC, F, TA, SE, SC, BC separately stands
for Lexical Analysis , Data Flow Analysis, Abstract Interpretation,
Model Checking, Fuzzing, Taint Analysis, Symbolic Execution,
Source Code and Binary Code.

IJCST Vol. 7, ISSue 3, July - SepT 2016

w w w . i j c s t . c o m INterNatIONal JOurNal Of COmPuter SCIeNCe aNd teChNOlOgy 75

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Table 1: Comparison of Tools in Vulnerability Detection

Tools LA DFA AI MC F TA SE SC BC

ITS4 √ √

SPLINT[40] √ √

PMD √ √

FindBugs √ √ √

RATS √ √

FlawFinder √ √

Jlint √ √

Parfait √ √ √

Astree √ √

Frama-C √ √

CBMC √ √ √

JPF √ √

SLAM √ √ √

BLAST √ √ √ √

SPIKE √ √

Sulley √ √

Peach √ √

Bestorm √ √

Spider Pig √ √

BitBlaze √ √ √

BuzzFuzz √ √ √

DART[31] √ √ √

CUTE[32] √ √ √

EXE[41] √ √

SAGE √ √ √

KLEE √ √

AEG √ √

MAYHEM √ √ √

S2E √ √

SANTE √ √ √

FLINDER-
SCA √ √ √ √

SMASH √ √ √

Driller √ √ √

VIII. Conclusion and Future Direction
In this paper, we provided an overview of vulnerability detection
techniques. For this purpose, we first summarized the required
background on software vulnerability detection. Then we
discussed the typical vulnerability detection techniques such as
Lexical Analysis, Data Flow Analysis, Abstract Interpretation,
Model Checking, Fuzzing, Taint Analysis, Symbolic Execution
and hybrid methods. At last, we compared the different tools with
their detection techniques employed.
From the survey, we can conclude that different techniques
have different advantages and disadvantages, single technique
is not sufficient for vulnerability detection, combining different
techniques and complementing each other is the main direction
in future.

References
[1] Cova, M., Felmetsger, V., Banks, G., Vigna, G.,"Static

detection of vulnerabilities in x86 executables", In Computer
Security Applications Conference, 2006. ACSAC’06. 22nd
Annual, pp. 269-278. IEEE, 2006.

[2] L. Peng, C. Baojiang,“A Comparative Study on Software
Vulnerability Static Analysis Techniques and Tools”, IEEE,
Beijing, China, 2010.

[3] Flaw Finder: [Online] Available: http://www.dwheeler.com/
flawfinder

[4] Viega, John, Jon-Thomas Bloch, Yoshi Kohno, Gary
McGraw,"ITS4: A static vulnerability scanner for C and C++
code", In Computer Security Applications, 2000. ACSAC'00.
16th Annual Conference, pp. 257-267. IEEE, 2000.

[5] PMD: [Online] Available: http://pmd.sourceforge.net/
[6] RATS: [Online] Available: https://code.google.com/

archive/p/rough-auditing-tool-for-security/
[7] Findbugs Hovemeyer, David, William Pugh,"Finding bugs

is easy", ACM Sigplan Notices 39, No. 12 (2004), pp. 92-
106.

[8] Jlint [Online] Available: https://sourceforge.net/projects/
jlint/

[9] Cifuentes, Cristina, Bernhard Scholz,"Parfait: designing a
scalable bug checker", In Proceedings of the 2008 workshop
on Static analysis, pp. 4-11. ACM, 2008.

[10] Cousot, Patrick, Radhia Cousot,"Abstract interpretation:
past, present and future." Proceedings of the Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/
IEEE Symposium on Logic in Computer Science (LICS).
ACM, 2014.

[11] Viladrosa, Robert Clarisó,"Abstract interpretation techniques
for the verification of timed systems", PhD diss., Universitat
Politècnica de Catalunya, 2005.

[12] Cousot, Patrick, Radhia Cousot, Jerôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, Xavier
Rival,"The ASTRÉE analyzer." In European Symposium
on Programming, pp. 21-30. Springer Berlin Heidelberg,
2005.

[13] Kirchner, Florent, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, Boris Yakobowski,"Frama-C: a software analysis
perspective", Formal Aspects of Computing 27, No. 3, pp.
573-609, 2015.

[14] Kroening, Daniel, Michael Tautschnig,"CBMC–C bounded
model checker", International Conference on Tools and
Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, 2014.

IJCST Vol. 7, ISSue 3, July - SepT 2016 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 76 INterNatIONal JOurNal Of COmPuter SCIeNCe aNd teChNOlOgy

[15] Havelund, Klaus, Thomas Pressburger,"Model checking
java programs using java pathfinder." International Journal
on Software Tools for Technology Transfer 2.4 (2000), pp.
366-381.

[16] Ball, Thomas, Sriram K. Rajamani,"The SLAM project:
debugging system software via static analysis", ACM
SIGPLAN Notices. Vol. 37. No. 1. ACM, 2002.

[17] Beyer, Dirk, et al.,"The software model checker Blast."
International Journal on Software Tools for Technology
Transfer 9.5-6, pp. 505-525, 2007.

[18] Miller, Barton P., Louis Fredriksen, Bryan So. "An empirical
study of the reliability of UNIX utilities", Communications
of the ACM 33.12 (1990), pp. 32-44.

[19] Godefroid, Patrice, Michael Y. Levin, David A. Molnar.
"Automated Whitebox Fuzz Testing." NDSS. Vol. 8. 2008.

[20] Munea, Tewodros Legesse, Hyunwoo Lim, Taeshik
Shon,"Network protocol fuzz testing for information systems
and applications: a survey and taxonomy." Multimedia Tools
and Applications, pp. 1-13, 2015.

[21] Amini, Pedram, and Aaron Portnoy. "Sulley-Pure Python
fully automated and unattended fuzzing framework".

[22] Aitel, D."An Introduction to SPIKE." In The fuzzer creation
kit, presented at the BlackHat USA Conference. 2002.

[23] Peach, M. Eddington, Peach Fuzzing Platform (peachfuzzer.
com)

[24] Bestorm, [Online] Available: http://www.beyondsecurity.
com/bestorm.html

[25] Spider Pig: [Online] Available: http://code.google.com/p/
spiderpig-pdffuzzer

[26] Song, Dawn, et al.,"BitBlaze: A new approach to computer
security via binary analysis", International Conference on
Information Systems Security", Springer Berlin Heidelberg,
2008.

[27] Ganesh, Vijay, Tim Leek, Martin Rinard,"Taint-based directed
whitebox fuzzing", In Proceedings of the 31st International
Conference on Software Engineering, pp. 474-484. IEEE
Computer Society, 2009.

[28] King, James C.,"Symbolic execution and program testing",
Communications of the ACM 19, No. 7, pp. 385-394,
1976.

[29] Cadar, Cristian, Daniel Dunbar, Dawson R. Engler. "KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs." OSDI. Vol. 8. 2008.

[30] Chipounov, Vitaly, Volodymyr Kuznetsov, George
Candea."S2E: A platform for in-vivo multi-path analysis of
software systems." ACM SIGPLAN Notices 46.3, pp. 265-
278, 2011.

[31] Godefroid, Patrice, Nils Klarlund, Koushik Sen,"DART:
directed automated random testing." ACM Sigplan Notices.
Vol. 40. No. 6. ACM, 2005.

[32] Sen, Koushik, Darko Marinov, Gul Agha,"CUTE: A concolic
unit testing engine for C." ACM SIGSOFT Software
Engineering Notes. Vol. 30. No. 5. ACM, 2005.

[33] Cha, Sang Kil, Thanassis Avgerinos, Alexandre Rebert, and
David Brumley,"Unleashing mayhem on binary code", In
2012 IEEE Symposium on Security and Privacy, pp. 380-
394. IEEE, 2012.

[34] Avgerinos, Thanassis, Sang Kil Cha, Alexandre Rebert, Edward
J. Schwartz, Maverick Woo, David Brumley,"Automatic
exploit generation." Communications of the ACM 57, No.
2, pp. 74-84, 2014.

[35] Rawat, Sanjay, Dumitru Ceara, Laurent Mounier, Marie-
Laure Potet,"Combining Static and Dynamic Analysis for
Vulnerability Detection", arXiv preprint arXiv:1305.3883
(2013).

[36] Chebaro, Omar, Pascal Cuoq, Nikolai Kosmatov, Bruno Marre,
Anne Pacalet, Nicky Williams, Boris Yakobowski,"Behind
the scenes in SANTE: a combination of static and dynamic
analyses." Automated Software Engineering 21, No. 1, pp.
107-143, 2014.

[37] Kiss, Balázs, Nikolai Kosmatov, Dillon Pariente, Armand
Puccetti,"Combining static and dynamic analyses for
vulnerability detection: Illustration on heartbleed." In Haifa
Verification Conference, pp. 39-50. Springer International
Publishing, 2015.

[38] Godefroid, Patrice, Aditya V. Nori, Sriram K. Rajamani, Sai
Deep Tetali,"Compositional may-must program analysis:
unleashing the power of alternation", In ACM Sigplan
Notices, Vol. 45, No. 1, pp. 43-56. ACM, 2010.

[39] Stephens, Nick, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, Giovanni Vigna,"Driller: Augmenting
Fuzzing Through Selective Symbolic Execution." In
Proceedings of the Network and Distributed System Security
Symposium. 2016.

[40] Evans, David, David Larochelle,"Improving security using
extensible lightweight static analysis", IEEE software 19,
No. 1, pp. 42-51, 2002.

[41] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, D. Engler, EXE:
Automatically generating inputs of death, ACM Transactions
on Information and System Security, Vol. 12(2), pp. 10, pp.
1–38, 2008.

