
IJCST Vol. 7, ISSue 3, July - SepT 2016

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology 129

 ISSn : 0976-8491 (online) | ISSn : 2229-4333 (print)

Review on Secure Storage Systems
1J. R. Pansare, 2A. D. Ambade

1,2Dept. of Computer Engineering, Savitribai Phule Pune University, India

Abstract
In the last few years, the idea of connecting existing computing
devices has given birth to a new concept called “connecting things”.
The thing includes sensors, actuators, RFID tags, any computing
device which can sense the environment and act upon. Due to
advances in sensor data collection technology, such as ubiquitous,
embedded devices and RFID technology has led to a large number
of devices connected to the net and that continuously transmit their
data over time. This data is precious to many enterprises, so there
is need of secure mass storage system for this data. This paper
includes a survey of various storage systems and methodologies
to store data securely on the storage system.

Keywords
Storage System, Security

I. Introduction
The term “Big Data” is used for data with three V’s. These are
Volume, Velocity and Variety. Today, with rapid development of
technology, the data is also increasing exponentially. This large
and growing data is important to many enterprises to perform data
mining and analytics activities. So, there is requirement for mass
storage system which can store this ever increasing data.
When designing a storage system the four things to consider are
availability, reliability, flexibility and security. Availability ensures
that data is available throughout. Reliability ensures that data
integrity is maintained. Flexibility is that devices can be added
and removed as and when required. The major concern today is
security which is ensures that data stored is secure.
Securing stored data involves preventing unauthorized access
along with preventing destruction of data (accidental or
intentional), corruption or infection of information. This paper
studies different storage systems and infrastructure frameworks
to ensure security.

II. Different Secure Storage Systems

A. POTSHARDS
POTSHARDS (Protection Over Time, Securely Harbouring And
Reliably Distributing Stuff) is a long term secure storage system
without using encryption [1]. Encryption is unsuited in many
situations for data storage which requires indefinitely long periods
of time. As key management is difficult and cryptosystems should
be updated to provide secrecy through encryption over periods of
decades. The goal of the system is provide security to relatively
static data with indefinite long lifetime. The three primary security
properties that are provided by this archive are:

The stored data must be viewable to authorized readers •
only.
The data must be accessible and available to authorized users •
for a reasonable amount of time.
The data integrity should be maintained. •

POTSHARDS uses three primary techniques to provide security
for long term:

Secret splitting•
Approximate pointers•

Use of secure distributed RAID techniques across multiple •
independent archives

In secret splitting a block is broken into n pieces, of which m
must be used to reconstitute the original block, any set of pieces
fewer than m does not contain information about the original
block. Approximate pointers are used to reconstitute the data in
a reasonable time even if all indices over a user’s data have been
lost. To achieve this there is no need to sacrifice any secrecy
property provided by the secret splitting. POTSHARDS first splits
users data into secure shards before storing. These shards are then
distributed to a number of archives.

B. Secure Storage System for Aggregate Data Storage
This storage system is used to store aggregate IoT data obtained
from various devices. Here again secret sharing is used. Shamir’s
secret sharing algorithm is used with added internal padding [2].
Before storing the data it is split into shares and this data is stored
to different storage devices. In the share generation procedure
the original data submitted by the client is divided into blocks
according to the threshold. Assume that there is M bytes of data
and threshold is T. Each block will contain (T-1) bytes of data and
if any block contains data lesser than the threshold then padding is
added, which is always 1. For each block of data a (T-1)th degree
polynomial is generated. Each coefficient is assigned one byte of
data and a0 always contains padding size. To retrieve the original
data T equations are generated for T shares and are aligned to form
multiplication of two matrices.
There are four main components of the system: client, dispatcher,
peer manager and peers. Client is the data owner who is responsible
for share generation. Dispatcher maintains the peer managers
IP address and tells client where to store the data blocks. Peer
manager manages peer groups, which are storage devices. After
the client receives data, it is divided to blocks using scaled secret
sharing scheme. Then client will ask dispatcher IP address of the
peer managers to store data blocks. The data is then stored to peer
devices via peer managers. To retrieve the original data client will
directly contact to peer manager.
Shield
Shield is a stackable secure storage system for sharing file in
public storage [3]. As the amount of personal data stored to public
data storage is increasing, user have become vulnerable towards
losing their data and the data is at risk as I it is stored at third
party sites. Traditionally users can either completely trust the
storage provider or users have manage their files. Such systems
are practically inapplicable in cloud environment. Shield addresses
the above challenges by a new proposed secure system architecture
and implements stackable secure storage system, where a proxy
server is in charge of authentication and access control. A new
variant of Merkel Hash Tree is proposed which support file content
update and efficient integrity checking. Also a hierarchical key
organization is designed for convenient key management and
efficient permission revocation.
The system mainly considers cloud service of data sharing which
includes of the four entities, the cloud server, the proxy server
group, many file owners, and many file users. as illustrated in
fig. 1

IJCST Vol. 7, ISSue 3, July - SepT 2016 ISSn : 0976-8491 (online) | ISSn : 2229-4333 (print)

w w w . i j c s t . c o m 130 InternatIonal Journal of Computer SCIenCe and teChnology

Fig. 1: System Model of Shield

1. Trust Domain
It organizes the massive number of users who are assigned various
attributes in the cloud environment efficiently. The trust domain
specifies the granularity of file sharing and users in same domain
are treated as same.

2. Cloud Server
The cloud server performs two tasks, of reliably storing the files
and using existing methods (e.g., Access Control List) to enforce
access control of the ciphertext.

3. Proxy Server
Proxy server is responsible for responsible for processing access
requests of user by distributing the corresponding secret keys
according to their access permissions.

4. File Owners and File Users
File owners create the data file and apart from this they grant
access permissions to their files.
Shield was designed for secure data storage and sharing in the
trust domain under the shared network and storage environments
and to save data owners from tedious key management.

D. Cryptonite
Cryptonite [4] is secure storage repository for sharing scientific
datasets in public cloud. Data sharing is the key concept in
scientific computing, as we are moving toward data intensive
sciences and engineering. The sharing is not just to scientific
results but it also refers to the raw and intermediate data that is
required in the scientific process. The architecture integrates the
client side libraries with the repository service and existing cloud
storage service operations like, PUT, GET, DELETE, GRANT,
REVOKE and SEARCH.
The fig. 2 illustrates kryptonite architecture. The client side library
is responsible for cryptographic operations like encryption and
pre-processing of the text file while uploading, and decrypting it
on the receipt. The Data Repository Service runs within the Cloud
virtual machine that has three sub-components: File Manager
(FM), Secure Index Manager (SIM) and Audit Manager (AM).
File Manager interacts with the cloud storage to store and retrieve
files requested by the user, and also restricts unauthorised updates
to data. Secure audit log for each file access is maintained by the
Audit Manager. Secure index per user for all the files owned by
that user is maintained by the Secure Index Manager. The index is
stored in the Secure Index Storage. The user’s request is accepted

by Index Manager which then executes a SEARCH query over
the index and returns matching results. The Cryptonite Secure
Storage (CSS) is the storage account with public Cloud which is
used to store the files and metadata. It uses standard authentication
mechanisms that are provided by Cloud data services.

Fig. 2: Cryptonite Architecture

The cryptonite use various cryptographic and security techniques in
its design like Public Key Infrastructure (PKI), Digital Signatures,
Broadcast Encryption, Lazy Revocation, Key rotation, Searchable
Encryption. By performing client side encryption before data
is stored in the repository the Cryptonite service ensures data
confidentiality.

E. Secure Distributed Repository
The secure distributed repository[5] is the data repository service
for Grid environments supporting secure sharing of confidential
data by members of ad-hoc created groups. This repository is
designed to make it easier for ad-hoc collaborations which require
sharing of restricted-access data between members of dynamically
created groups. For this the repository must support creating and
managing users group and provide access to data based on user’s
membership. Each repository entry is associated with a metadata
record of variable length vector attribute of name-value pair.
Both generic and application specific properties are captured by
attributes. Each metadata record is identified by an URI (Unique
Resource Identifier). A replica locator maintains the relationship
between URI and physical location (URL) of the corresponding
repository entry. The relationship between metadata URI and URL
for corresponding entry is one-to-many. Instead of storage entry it
rather feasible to associate collaborative group access privileges
with metadata record. The access control mechanisms of are based
on groups privileges to perform specified operations on the entries.
A user may be the member of different groups, having different
privileges for different groups. It will be tedious to modify the flag
permissions individually for each resource to be share. For this
reason folders are used to arrange view of data collection.

F. HASS
HASS[6] is a Highly Available, Scalable and Secure distributed
data storage systems. To achieve scalability in terms of performance
and key management, file systems such as Object based Storage
Devices (OSD) and Identity Based Encryption (IBE) are integrated.
High performance I/O is provided by OSD while IBE simplifies
key distribution and eliminates pre shared secret keys. For privacy
and integrity both static and dynamic data are protected with
different encryption strategies. IBE is used to protect data in transit
while secret sharing is used to protect data at rest. HASS is a high

IJCST Vol. 7, ISSue 3, July - SepT 2016

w w w . i j c s t . c o m InternatIonal Journal of Computer SCIenCe and teChnology 131

 ISSn : 0976-8491 (online) | ISSn : 2229-4333 (print)

performance and fault resilient infrastructure of distributed storage
systems, which is deployed over object based storage devices. It
uses large number of servers/devices for parallel I/O operations.
High availability of data is obtained by replication. To achieve
flexible and scalable key management Identity based encryption
is adopted. Large data files are stripped into thousands of OSDs
for parallel I/O. Each OSD is a cluster of a root node and 2D
device/server matrix. At this level secret sharing is used to protect
static data, without using key based encryption or decryption. The
root node or server splits the data object into c shares based on
(b,c) scheme and distributes to in a row of the matrix. Then these
shares are duplicated for high availability and fault resilience
along the same columns. Encryption is done when data objects
are transferred between client and root, and when shares are
being transferred between root and device matrix. IBE is used
for protection of data in transit as it allows to be arbitrary strings
and private keys can be derived from public keys. For private keys
IBE uses centralized key generator. There is no need to transfer
private keys between devices. Each client and server maintains
its own IBE infrastructure. HASS is a reconfigurable system, in
which OSDs can join and leave.
Blakley’s Secret Sharing Scheme for Distributed File Systems:
Security, reliability and scalability are the main design goals of
Distributed File System (DFS) in cloud storage. Traditionally
data duplication and cryptography were used to support these
features of DFS. However, key management is an hassle in
cryptography and it will be a costly affair. A revised Blakley’s
secret sharing scheme is applied to the DFS to support security
and reliability without sacrificing scalability [7]. The distributed
system is deployed with Graphics Processing Unit (GPU). There
are two phases of secret sharing scheme: share generation and data
restoration. To improve the security level the large data is split
into shares and a random number is added. There are six phases
of share generation: Padding Addition, Internal Random Bytes
(IRB) Insertion and XOR, Random Matrix Generation, Matrix
Multiplication, Matrix Concatenation, and Share Division. The
following fig. 3 illustrates share generation phase

Fig. 3: Share Generation

Data restoration also has six phases: Share Combination, Matrix
Extraction, Gauss Elimination, Matrix Multiplication, IRB XOR

and Deletion, and Padding Deletion. Data restoration is explained
in the following figure 4. The distributed system based on secret
sharing consists of an index node and some compute and data
nodes. Compute and data nodes status is managed by index node.
This is done by positively requesting their status periodically and
receiving the status report passively. The index node will phase
out after assigning compute nodes for share generation and data
restoration as well as after assigning data node for storage. Then
client will directly communicate with compute nodes for their
later work.

Fig. 4: Data Restoration

H. Key-Aggregate Cryptosystem(KAC)
In cloud storage data sharing is an important functionality. This
scheme is proposed to securely, flexibly and efficiently share data
with others on cloud storage. KAC is a public key encryption
scheme where any set of cipher text is decryptable by a constant
size decryption key. This decryption key is generated by the owner
of the master key. Using KAC user will encrypt the message with a
public key and a ciphertext identifier called class. If two users want
to share something on cloud, they should encrypt their messages
using KAC scheme, by which an aggregate key is generated and
this key is used for decryption. The KAC scheme consist of five
polynomial time algorithms:

Setup: this algorithm is used by data owner to establish the •
public system parameter.
KeyGen: this algorithm generates a public/master-secret key •
pair.
Encrypt: it is use to encrypt the message by anyone who •
wants to encrypt.
Extract: this algorithm is used by the data owner to generate •
the aggregate key with the help of a master secret key for a
set of ciphertext class.
Decrypt: any user with an aggregate key can decrypt the •
ciphertext provided it contains the ciphertext class within
it.

I. DepSky
Companies that handle critical data are using cloud storage services
to store their data due to its increasing popularity. The critical
data includes medical record databases, power system historical

IJCST Vol. 7, ISSue 3, July - SepT 2016 ISSn : 0976-8491 (online) | ISSn : 2229-4333 (print)

w w w . i j c s t . c o m 132 InternatIonal Journal of Computer SCIenCe and teChnology

information and financial data. DepSky is a system that provides
encryption, encoding and replication of the data on diverse clouds
that form a cloud-of-clouds to improve the availability, integrity
and confidentiality of information stored in the cloud. DepSky is
a dependable and secure storage system uses the benefits of cloud
computing by making use of combination of diverse commercial
clouds to build cloud of clouds. It is virtual cloud storage where
a user can access it by invoking operations of individual cloud.
Depsky addresses four limitations of cloud computing; loss of
availability, loss of privacy, loss of data and corruption of data.
The asynchronous distributed system consist three types of parties,
readers, writers and cloud storage. Here reader and writer are
roles of clients.

III. Conclusion
Security is a major concern in today’s world. Along with availability,
reliability and scalability, security of the system is also important.
Security should be provided not only for data in transit but also
for data at rest i.e., dynamic and static data respectively. There
are many schemes designed to protect the data. They may be
cryptographic or non-cryptographic. In this paper various secure
systems and schemes are studied.

References
[1] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, Kaladhar

Voruganti,POTSHARDS: secure long-term storage without
encryption, In: Proceedings of USENIX Annual Technical
Conference, 2007.

[2] Hai Jiang, Feng Shen, Su Chen, Kuan-Ching Li, Young-Sik
Jeong, “A secure and scalable storage system for aggregate
data in IoT”, In Future Generation Computer Systems,
Elsevier(2015)

[3] Jiwu Shu, Zhirong Shen, Wei Xue,“Shield: a stackable secure
storage system for file sharing in public storage”, J. Parallel
Distrib. Comput. 74 (9) (2014).

[4] Alok Kumbhare, Yogesh Simmhan, Viktor Prasanna,
Designing a secure storage repository for sharing scientific
datasets using public clouds, In: Proceedings of the Second
International Workshop on Data Intensive Computing in the
Clouds, 2011.

[5] Tomasz Haupt, Anand Kalyanasundaram, Igor Zhuk,
Architecture for a secure distributed repository, In:
Proceedings of the 7th IEEE/ACM International Conference
on Grid Computing, 2006.

[6] Zhiqian Xu, Hai Jiang, HASS: Highly available, scalable
and secure distributed data storage systems, In: Proceedings
of the 2009 IEEE/IFIP International Symposium on Trusted
Computing and Communications, 2009.

[7] Su Chen, Yi Chen, Hai Jiang, Laurence T. Yang, Kuan-Ching
Li, A secure distributed file system based on revised Blakley’s
secret sharing scheme, in: Proceedings of the 11th IEEE
International Conference on Trust, Security and Privacy in
Computing and Communications, Liverpool, UK, 2012.

[8] Cheng-Kang Chu, Sherman S.M. Chow, Wen-Guey
Tzeng, Jianying Zhou, Robert H. Deng,"Key-aggregate
cryptosystem for scalable data sharing in cloud storage",
IEEE Trans. Parallel and Distributed System, Vol. 25, pp.
468-477, 2014

[9] Bessani, Alysson, et al.,"DepSky: dependable and secure
storage in a cloud-of-clouds." ACM Transactions on Storage
(TOS) 9.4 (2013): 12.

